Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Agric Food Chem ; 72(1): 916-932, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38115548

RESUMO

Applying brassinolide (BL, a phytohormone) in combination with pyraclostrobin (Pyr, a fungicide) has shown effective disease control in field trials. However, the mechanism by which BL + Pyr control disease remains uncertain. This work compared the disease control and defense responses of three pretreatments (BL, Pyr, and BL + Pyr) in Arabidopsis thaliana. We found that BL + Pyr improved control against Pyr-sensitive Hyaloperonospora arabidopsidis and Botrytis cinerea by 19 and 17% over Pyr, respectively, and achieved 29% control against Pyr-resistant B. cinerea. Furthermore, BL + Pyr outperformed BL or Pyr in boosting transient H2O2 accumulation, and the activities of POD, APX, GST, and GPX. RNA-seq analysis revealed a more potent activation of defense genes elicited by BL + Pyr than by BL or Pyr. Overall, BL + Pyr controlled disease by integrating the elicitation of plant innate disease resistance with the fungicidal activity of Pyr.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Peróxido de Hidrogênio , Brassinosteroides/farmacologia , Proteínas de Arabidopsis/genética , Resistência à Doença , Botrytis/fisiologia , Doenças das Plantas/prevenção & controle , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003624

RESUMO

Improving nitrogen (N) assimilation efficiency without yield penalties is important to sustainable food security. The chemical regulation approach of N assimilation efficiency is still less explored. We previously found that the co-application of brassinolide (BL) and pyraclostrobin (Pyr) synergistically boosted biomass and yield via regulating photosynthesis in Arabidopsis thaliana. However, the synergistic effect of BL and Pyr on N metabolism remains unclear. In this work, we examined the N and protein contents, key N assimilatory enzyme activities, and transcriptomic and metabolomic changes in the four treatments (untreated, BL, Pyr, and BL + Pyr). Our results showed that BL + Pyr treatment synergistically improved N and protein contents by 56.2% and 58.0%, exceeding the effects of individual BL (no increase) or Pyr treatment (36.4% and 36.1%). Besides synergistically increasing the activity of NR (354%), NiR (42%), GS (62%), and GOGAT (62%), the BL + Pyr treatment uniquely coordinated N metabolism, carbon utilization, and photosynthesis at the transcriptional and metabolic levels, outperforming the effects of individual BL or Pyr treatments. These results revealed that BL + Pyr treatments could synergistically improve N assimilation efficiency through improving N assimilatory enzyme activities and coordinated regulation of N and carbon metabolism. The identified genes and metabolites also informed potential targets and agrochemical combinations to enhance N assimilation efficiency.


Assuntos
Arabidopsis , Nitrogênio , Nitrogênio/metabolismo , Arabidopsis/fisiologia , Carbono/metabolismo , Multiômica
3.
J Plant Physiol ; 287: 154044, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392525

RESUMO

The carbon dioxide emitted by human accounts for only a small fraction of global photosynthesis consumption, half of which is due to microalgae. The high efficiency of algae photosynthesis is attributed to the pyrenoid-based CO2-concentrating mechanism (CCM). The formation of pyrenoid which has a variety of Rubisco-binding proteins mainly depends on liquid-liquid phase separation (LLPS) of Rubisco, a CO2 fixing enzyme. At present, our understanding of pyrenoid at the molecular level mainly stems from studies of the model algae Chlamydomonas reinhardtii. In this article, we summarize the current research on the structure, assembly and application of Chlamydomonas reinhardtii pyrenoids, providing new ideas for improving crop photosynthetic performance and yield.

4.
Front Plant Sci ; 14: 1138563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063198

RESUMO

In the context of global food crisis, applying the phytohormone-brassinosteroids (BRs) in combination with the fungicide-pyraclostrobin (Pyr) was beneficial for plant quality and productivity in several field trials. However, in addition to the benefits of disease control due to the innate fungicidal activity of Pyr, it remains to be understood whether the coapplication of BL+ Pyr exerts additional growth-promoting effects. For this purpose, the effects of BL treatment, Pyr treatment, and BL+ Pyr treatment in Arabidopsis thaliana were compared. The results showed that the yield increased at a rate of 25.6% in the BL+Pyr group and 9.7% in the BL group, but no significant change was observed in the Pyr group. Furthermore, the BL+Pyr treatment increased the fresh weight of both the leaves and the inflorescences. In contrast, the Pyr and BL treatments only increased the fresh weight of leaves and inflorescences, respectively. Additionally, the BL + Pyr treatment increased the Pn, Gs, Tr, Vc, max, Jmax, VTPU, ETR, Fv'/Fm', ΦPSII, Rd, AYE and Rubisco enzyme activity by 26%, 38%, 40%, 16%, 19%, 15%, 9%, 10%, 17%, 179%, 18% and 32%, respectively. While, these paraments did not change significantly by the BL or Pyr treatments. Treatment with BL + Pyr and Pyr, rather than BL, improved the chlorophyll a and chlorophyll b contents by upregulating genes related to chlorophyll biosynthesis and downregulating genes related to chlorophyll degradation. Additionally, according to transcriptomic and metabolomic analysis, the BL+ Pyr treatment outperformed the individual BL or Pyr treatments in activating the transcription of genes involved in photosynthesis and increasing sugar accumulation. Our results first validated that the combined usage of BL and Pyr exerted striking synergistic effects on enhancing plant biomass and yield by increasing photosynthetic efficiency. These results might provide new understanding for the agricultural effects by the co-application of BL and Pyr, and it might stimulate the efforts to develop new environment-friendly replacement for Pyr to minimize the ecotoxicology of Pyr.

5.
PLoS One ; 17(12): e0278341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520834

RESUMO

PURPOSE: To explore the association between the physical health (PH) and physical activity behavior (PAB) of children aged 3 to 6 years, and to provide a basis for the scientific planning of children's physical activity behavior in kindergarten. METHODS: A total of 18041 children in China aged 3 to 6 years were selected as the research subject. The PH monitoring indicators were measured according to "The National Physical Fitness Measurement Standards Manual" (Preschool Children Version) (NPFMSM), and PAB was reported by teachers. The chi-square test was used to test for differences in PH and PAB across groups, the percentile method was used to rank PAB, correlation analysis was used to analyze the association between components of PH and PAB, and multiple linear regression was used to determine the independent association between PAB and PH. RESULTS: Participants in this study exhibited poor PH status, and the detection rates of failure were 16.4% for boys and 16.8% for girls, and showed a decreasing trend with increasing age. The grade difference and sex difference in PH components were statistically significant (P<0.01). PAB changes to static activities with increasing age, mainly to static indoor physical activities (SIPAs). The regression effects of the total duration of physical activity (TDPA) and dynamic physical activity (DPA) on PH score and physical fitness (PF) score were significant (P < 0.01) but not statistically significant with static physical activity (SPA) (P>0.05). Dynamic outdoor physical activity (DOPA) is the core factor affecting children's PH, and is significantly positively correlated with the components of PH. CONCLUSION: PAB in kindergarten can improve children's PH, and reasonable planning of PAB in kindergarten has a targeted effect on PH promotion.


Assuntos
Atividade Motora , Instituições Acadêmicas , Pré-Escolar , Humanos , Feminino , Masculino , Estudos Transversais , Exercício Físico , China
6.
Front Plant Sci ; 13: 1037038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407602

RESUMO

Chloroplasts in land plants have their own small circular DNA that is presumed to have originated from cyanobacteria-related endosymbionts, and the chloroplast genome is an attractive target to improve photosynthetic ability and crop yield. However, to date, most transgenic or genetic engineering technologies for plants are restricted to manipulations of the nuclear genome. In this review, we provide a comprehensive overview of chloroplast genetic engineering and regulation of gene expression from the perspective of history and biology, focusing on current and latest methods. In addition, we suggest techniques that may regulate the chloroplast gene expression at the transcriptional or post-transcriptional level.

7.
Bioelectrochemistry ; 147: 108201, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35809468

RESUMO

The combination of metal organic framework (MOF), covalent organic frameworks (COF) and carbon nanotube (CNT) forms a system due to their synergistic effect, thereby possessing the structural traits of individual components and exhibiting new properties. Herein, we successfully integrated terephthalonitrile-based-COF (TPN-COF)/CNT into the Ce-MOF, designed and synthesized Ce-MOF/TPN-COF/CNT hybrid material to construct a label-free immunosensor for specific detection of carcinomicantigen 125 (CA125). The synthesized composite exhibited abundant active sites and excellent electronic conductivity. As a result, more immunocomplex were immobilized to the carbon paste electrode (CPE) modified by Ce-MOF/TPN-COF/CNT owing to the hydrogen bonding and π-π interaction between triazine ring and trimesic acid ligand, leading to produce an amplified current response. The results of various instrument tests demonstrated that these structural advantages indeed contribute to the low detection limit of 0.000088 U/mL and wide linear range from 0.0001 U/mL to 100 U/mL for the CA125 immunosensor, which was superior to those of other proposed immunosensor. In addition, the constructed CA125 immunosensor exhibits good stability, repeatability, specificity, regeneration characteristics and acceptability in human serum. Therefore, MOF/COF/CNT composite holds promise as an electrode platform for building electrochemical immunosensors in the early diagnosis of cancer.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanotubos de Carbono , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Humanos , Imunoensaio/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Nanotubos de Carbono/química
8.
Plant Sci ; 308: 110908, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034865

RESUMO

Chloroplast biogenesis and development regulation have long been a focus of research; however, the underlying mechanisms of these processes have not yet been fully elucidated. Pentatricopeptide repeat (PPR) proteins have been shown to play key roles in chloroplast development. Here, we identified a novel P-type PPR protein, Early Chloroplast Development 2 (ECD2), and the ecd2 mutant resulted in embryo lethality. The RNAi lines of ECD2 showed varying degrees of albino cotyledons and abnormal chloroplast development, but true leaves were similar to the wild-type. Further analysis revealed that ECD2 was responsible for chloroplast gene expression and group II intron splicing of several genes. Transcriptome analysis combined with quantitative real-time PCR showed that ECD2 was associated with the expression of ribosomal genes and accumulation of chloroplast ribosomes. Overall, our results indicate that ECD2 is critically important for early chloroplast development in cotyledon.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Cloroplastos/metabolismo , Cotilédone/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cotilédone/genética , Mutação , Folhas de Planta/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
9.
Analyst ; 146(10): 3352-3360, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33999053

RESUMO

The development of a rapid and low concentration detection method for naphthol isomers is of great significance for protecting human health and environmental safety due to their high toxicity and strong corrosivity. Here, we reported a novel hollow ZnO/ZnCo2O4 material derived by adjusting the molar ratio of Zn/Co of bimetal-organic frameworks (BMOFs) and its application for simultaneous detection of 1-naphthol (1-NAP) and 2-naphthol (2-NAP) by electrochemical methods. The oxidation peak currents of 1-NAP and 2-NAP on a ZnO/ZnCo2O4 modified carbon paste electrode (ZnO/ZnCo2O4/CPE) depended linearly on their concentrations in the range of 0.4-50 µM and 0.06-40 µM with detection limits of 0.13 and 0.02 µM, respectively. Their electrooxidation at the ZnO/ZnCo2O4/CPE was a one-electron and one-proton process. These excellent performances could be driven by the high conductivity and number of active sites as well as the unique structure of ZnO/ZnCo2O4. The tactic may shed light on developing new electrodes for fast and efficient electrochemical detection of naphthol isomers.

10.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802303

RESUMO

Chloroplasts cannot develop normally without the coordinated action of various proteins and signaling connections between the nucleus and the chloroplast genome. Many questions regarding these processes remain unanswered. Here, we report a novel P-type pentatricopeptide repeat (PPR) factor, named Albino Cotyledon Mutant1 (ACM1), which is encoded by a nuclear gene and involved in chloroplast development. Knock-down of ACM1 transgenic plants displayed albino cotyledons but normal true leaves, while knock-out of the ACM1 gene in seedlings was lethal. Fluorescent protein analysis showed that ACM1 was specifically localized within chloroplasts. PEP-dependent plastid transcript levels and splicing efficiency of several group II introns were seriously affected in cotyledons in the RNAi line. Furthermore, denaturing gel electrophoresis and Western blot experiments showed that the accumulation of chloroplast ribosomes was probably damaged. Collectively, our results indicate ACM1 is indispensable in early chloroplast development in Arabidopsis cotyledons.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cotilédone/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Cloroplastos/genética , Plastídeos/genética , Cloroplastos , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia , Splicing de RNA/genética , Ribossomos/genética , Plântula/genética
11.
Front Plant Sci ; 12: 627501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633768

RESUMO

The pentatricopeptide repeat (PPR) proteins constitute one of the largest nuclear-encoded protein families in higher plants, with over 400 members in most sequenced plant species. The molecular functions of these proteins and their physiological roles during plant growth and development have been widely studied. Generally, there is mounting evidence that PPR proteins are involved in the post-transcriptional regulation of chloroplast and/or mitochondrial genes, including RNA maturation, editing, intron splicing, transcripts' stabilization, and translation initiation. The cooperative action of RNA metabolism has profound effects on the biogenesis and functioning of both chloroplasts and mitochondria and, consequently, on the photosynthesis, respiration, and development of plants and their environmental responses. In this review, we summarize the latest research on PPR proteins, specifically how they might function in the chloroplast, by documenting their mechanism of molecular function, their corresponding RNA targets, and their specific effects upon chloroplast biogenesis and host organisms.

12.
J Pharm Biomed Anal ; 125: 415-26, 2016 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-27131804

RESUMO

YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA