Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Comp Neurol ; 532(2): e25590, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335045

RESUMO

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates. Immunohistochemical techniques with specific antibodies against GABA or against its synthesizing enzyme, glutamic acid decarboxylase (GAD) allowed characterizing GABAergic neurons and fibers in the CNS. However, studies on the CNS distribution of GABAergic neurons and fibers of bony fishes are scant and were done in teleost species. With the aim of understanding the early evolution of this system in bony vertebrates, we analyzed the distribution of GABA-immunoreactive (-ir) and GAD-ir neurons and fibers in the CNS of a basal ray-finned fish, the Siberian sturgeon (Chondrostei, Acipenseriformes), using immunohistochemical techniques. Our results revealed the presence and distribution of GABA/GAD-ir cells in different regions of the CNS such as olfactory bulbs, pallium and subpallium, hypothalamus, thalamus, pretectum, optic tectum, tegmentum, cerebellum, central grey, octavolateralis area, vagal lobe, rhombencephalic reticular areas, and the spinal cord. Abundant GABAergic innervation was observed in most brain regions, and GABAergic fibers were very abundant in the hypothalamic floor along the hypothalamo-hypophyseal tract and neurohypophysis. In addition, GABA-ir cerebrospinal fluid-contacting cells were observed in the alar and basal hypothalamus, saccus vasculosus, and spinal cord central canal. The distribution of GABAergic systems in the sturgeon brain shows numerous similarities to that observed in lampreys, but also to those of teleosts and tetrapods.


Assuntos
Encéfalo , Sistema Nervoso Central , Animais , Peixes , Medula Espinal , Ácido gama-Aminobutírico
2.
J Comp Neurol ; 532(1): e25586, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289191

RESUMO

The torus semicircularis (TS) of teleosts is a key midbrain center of the lateral line and acoustic sensory systems. To characterize the TS in adult zebrafish, we studied their connections using the carbocyanine tracers applied to the TS and to other related nuclei and tracts. Two main TS nuclei, central and ventrolateral, were differentiable by their afferent connections. From central TS, (TSc) numerous toropetal cells were labeled bilaterally in several primary octaval nuclei (anterior, magnocellular, descending, and posterior octaval nuclei), in the secondary octaval nucleus, in the caudal octavolateralis nucleus, and in the perilemniscular region. In the midbrain, numerous toropetal cells were labeled in the contralateral TSc. In the diencephalon, toropetal cells labeled from the TSc were observed ipsilaterally in the medial prethalamic nucleus and the periventricular posterior tubercle nucleus. TSc toropetal neurons were also labeled bilaterally in the hypothalamic anterior tuberal nucleus (ATN) and ipsilaterally in the parvicellular preoptic nucleus but not in the telencephalon. Tracer application to the medial octavolateralis nucleus revealed contralateral projections to the ventrolateral TS (TSvl), whereas tracer application to the secondary octaval nucleus labeled fibers bilaterally in TSc and neurons in rostral TSc. The TSc sends ascending fibers to the ipsilateral lateral preglomerular region that, in turn, projects to the pallium. Application of DiI to the optic tectum labeled cells and fibers in the TSvl, whereas application of DiI to the ATN labeled cells and fibers in the TSc. These results reveal that the TSvl and TSc are mainly related with the mechanosensory lateral line and acoustic centers, respectively, and that they show different higher order connections.


Assuntos
Neurônios , Peixe-Zebra , Animais , Acústica , Núcleo Arqueado do Hipotálamo , Colículos Superiores
3.
J Comp Neurol ; 531(1): 58-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150899

RESUMO

The expression of the corticotropin-releasing hormone (PmCRH) and the CRH-binding protein (PmCRHBP) mRNAs was studied by in situ hybridization in the brain of prolarvae, larvae, and adults of the sea lamprey Petromyzon marinus. We also generated an antibody against the PmCRH mature peptide to study the distribution of PmCRH-immunoreactive cells and fibers. PmCRH immunohistochemistry was combined with antityrosine hydroxylase immunohistochemistry, PmCRHBP in situ hybridization, or neurobiotin transport from the spinal cord. The most numerous PmCRH-expressing cells were observed in the magnocellular preoptic nucleus-paraventricular nucleus and in the superior and medial rhombencephalic reticular formation. PmCRH expression was more extended in adults than in larvae, and some cell populations were mainly (olfactory bulb) or only (striatum, ventral hypothalamus, prethalamus) observed in adults. The preopto-paraventricular fibers form conspicuous tracts coursing toward the neurohypophysis, but many immunoreactive fibers were also observed coursing in many other brain regions. Brain descending fibers in the spinal cord mainly come from cells located in the isthmus and in the medial rhombencephalic reticular nucleus. The distribution of PmCRHBP-expressing neurons was different from that of PmCRH cells, with cells mainly present in the septum, striatum, preoptic region, tuberal hypothalamus, pretectum, pineal complex, isthmus, reticular formation, and spinal cord. Again, expression in adults was more extended than in larvae. PmCRH- and PmCRHBP-expressing cells are different, excluding colocalization of these substances in the same neuron. Present findings reveal a complex CRH/CRHBP system in the brain of the oldest extant vertebrate group, the agnathans, which shows similarities but important divergences with that of mammals.


Assuntos
Petromyzon , Animais , Petromyzon/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Mamíferos
4.
Front Neuroanat ; 16: 901451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991967

RESUMO

The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.

5.
Brain Struct Funct ; 227(8): 2593-2607, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018391

RESUMO

Neurogranin (Nrgn) is a neural protein that is enriched in the cerebral cortex and is involved in synaptic plasticity via its interaction with calmodulin. Recently we reported its expression in the brain of the adult zebrafish (Alba-González et al. J Comp Neurol 530:1569-1587, 2022). In this study we analyze the development of Nrgn-like immunoreactivity (Nrgn-like-ir) in the brain and sensory structures of zebrafish embryos and larvae, using whole mounts and sections. First Nrgn-like positive neurons appeared by 2 day post-fertilization (dpf) in restricted areas of the brain, mostly in the pallium, epiphysis and hindbrain. Nrgn-like populations increased noticeably by 3 dpf, reaching an adult-like pattern in 6 dpf. Most Nrgn-like positive neurons were observed in the olfactory organ, retina (most ganglion cells, some amacrine and bipolar cells), pallium, lateral hypothalamus, thalamus, optic tectum, torus semicircularis, octavolateralis area, and viscerosensory column. Immunoreactivity was also observed in axonal tracts originating in Nrgn-like neuronal populations, namely, the projection of Nrgn-like immunopositive primary olfactory fibers to olfactory glomeruli, that of Nrgn-like positive pallial cells to the hypothalamus, the Nrgn-like-ir optic nerve to the pretectum and optic tectum, the Nrgn-like immunolabeled lateral hypothalamus to the contralateral region via the horizontal commissure, the octavolateralis area to the midbrain via the lateral lemniscus, and the viscerosensory column to the dorsal isthmus via the secondary gustatory tract. The late expression of Nrgn in zebrafish neurons is probably related to functional maturation of higher brain centers, as reported in the mammalian telencephalon. The analysis of Nrgn expression in the zebrafish brain suggests that it may be a useful marker for specific neuronal circuitries.


Assuntos
Neurogranina , Peixe-Zebra , Animais , Neurogranina/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Axônios/metabolismo , Mamíferos
6.
J Comp Neurol ; 530(10): 1569-1587, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35015905

RESUMO

We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.


Assuntos
Neurogranina , Peixe-Zebra , Animais , Encéfalo/metabolismo , Diencéfalo/metabolismo , Mamíferos , Neurogranina/análise , Neurogranina/metabolismo , Rombencéfalo/química , Peixe-Zebra/metabolismo
7.
J Comp Neurol ; 530(8): 1164-1194, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34697803

RESUMO

We studied the connections (connectome) of the adult zebrafish pallium using carbocyanine dye tracing and ancillary anatomical methods. The everted zebrafish pallium (dorsal telencephalic area, D) is composed of several major zones (medial, lateral, dorsal, central, anterior, and posterior) distinguishable by their topography, cytoarchitecture, immunohistochemistry, and genoarchitecture. Our comprehensive study reveals poor interconnectivity between these pallial areas, especially between medial (Dm), lateral/dorsal (Dl, Dd), and posterior (Dp) regions. This suggests that the zebrafish pallium has dedicated modules for different neural processes. Pallial connections with extrapallial regions also show compartmental organization. Major extratelencephalic afferents come from preglomerular nuclei (to Dl, Dd, and Dm), posterior tuberal nucleus (to Dm), and lateral recess nucleus (to Dl). The subpallial (ventral, V) zones dorsal Vv, Vd, and Vs, considered homologues of the striatum, amygdala, and pallidum, are mainly afferent to Dl/Dd and Dp. Regarding the efferent pathways, they also appear characteristic of each pallial region. Rostral Dm projects to the dorsal entopeduncular nucleus. Dp is interconnected with the olfactory bulbs. The central region (Dc) defined here receives mainly projections from Dl-Dd and projects toward the pretectum and optic tectum, connections, which help to delimiting Dc. The connectome of the adult pallium revealed here complements extant studies on the neuroanatomical organization of the brain, and may be useful for neurogenetic studies performed during early stages of development. The connectome of the zebrafish pallium was also compared with the pallial connections reported in other teleosts, a large group showing high pallial diversity.


Assuntos
Telencéfalo , Peixe-Zebra , Animais , Córtex Cerebral , Vias Eferentes , Bulbo Olfatório
8.
Biology (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34681077

RESUMO

In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract. Interestingly, in larval sea lampreys, only three regions showed Ucn3 expression, namely the prethalamus, the nucleus of the medial longitudinal fascicle and the posterior rhombencephalic reticular formation. A comparison with distributions of Ucn3 in other vertebrates revealed poor conservation of Ucn3 expression during vertebrate evolution. The large qualitative differences in Ucn3 expression observed between larval and adult phases suggest that the maturation of neuroregulatory circuits in the striatum, torus semicircularis and hindbrain chemosensory systems is closely related to profound life-style changes occurring after the transformation from larval to adult life.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32231522

RESUMO

This study describes the cytoarchitecture of the torus longitudinalis (TL) in adult zebrafish by using light and electron microscopy, as well as its main connections as revealed by DiI tract tracing. In addition, by using high resolution confocal imaging followed by digital tracing, we describe the morphology of tectal pyramidal cells (type I cells) that are GFP positive in the transgenic line Tg(1.4dlx5a-dlx6a:GFP)ot1. The TL consists of numerous small and medium-sized neurons located in a longitudinal eminence attached to the medial optic tectum. A small proportion of these neurons are GABAergic. The neuropil shows three types of synaptic terminals and numerous dendrites. Tracing experiments revealed that the main efference of the TL is formed of parallel-like fibers that course within the marginal layer of the optic tectum. A toral projection to the thalamic nucleus rostrolateralis is also observed. Afferents to the TL come from visual and cerebellum-related nuclei in the pretectum, namely the central, intercalated and the paracommissural pretectal nuclei, as well as from the subvalvular nucleus in the isthmus. Additional afferents to the TL may come from the cerebellum but their origins could not be confirmed. The tectal afferent projection to the TL originates from cells similar to the type X cells described in other cyprinids. Tectal pyramidal neurons show round or piriform cell bodies, with spiny apical dendritic trees in the marginal layer. This anatomical study provides a basis for future functional and developmental studies focused on this cerebellum-like circuit in zebrafish.


Assuntos
Colículos Superiores/anatomia & histologia , Colículos Superiores/ultraestrutura , Vias Visuais/anatomia & histologia , Vias Visuais/ultraestrutura , Peixe-Zebra/anatomia & histologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Microscopia/métodos , Microscopia Eletrônica/métodos , Colículos Superiores/química , Vias Visuais/química
10.
J Comp Neurol ; 528(14): 2333-2360, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32141087

RESUMO

Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5, and PSST6) have been recently identified in elasmobranchs (Tostivint et al., General and Comparative Endocrinology, 2019, 279, 139-147). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the central nervous system (CNS) of Scyliorhinus canicula using in situ hybridization. Additionally, we combined in situ hybridization with tyrosine hydroxylase (TH) immunochemistry for better characterization of PSST1 and PSST6 expressing populations. We observed differential expression of PSST1 and PSST6, which are the most widely expressed PSST transcripts, in cell populations of many CNS regions, including the pallium, subpallium, hypothalamus, diencephalon, optic tectum, midbrain tegmentum, and rhombencephalon. Interestingly, numerous small pallial neurons express PSST1 and PSST6, although in different populations judging from the colocalization of TH immunoreactivity and PSST6 expression but not with PSST1. We observed expression of PSST1 in cerebrospinal fluid-contacting (CSF-c) neurons of the hypothalamic paraventricular organ and the central canal of the spinal cord. Unlike PSST1 and PSST6, PSST2, and PSST3 are only expressed in cells of the hypothalamus and in some hindbrain lateral reticular neurons, and PSST5 in cells of the region of the entopeduncular nucleus. Comparative data of brain expression of PSST genes indicate that the somatostatinergic system of sharks is the most complex reported in any fish.


Assuntos
Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Tubarões/metabolismo , Somatostatina/metabolismo , Transcriptoma , Animais
11.
Front Neuroanat ; 13: 83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572131

RESUMO

Galanin is a neuropeptide that is widely expressed in the mammalian brain, where it regulates many physiological processes, including feeding and nociception. Galanin has been characterized extensively in jawed vertebrates (gnathostomes), but little is known about the galanin system in the most ancient extant vertebrate class, the jawless vertebrates or agnathans. Here, we identified and cloned a cDNA encoding the sea lamprey (Petromyzon marinus) galanin precursor (PmGalP). Sequence analysis revealed that PmGalP gives rise to two neuropeptides that are similar to gnathostome galanins and galanin message-associated peptides. Using mRNA in situ hybridization, the distribution of PmGalP-expressing neurons was mapped in the brain of larval and adult sea lampreys. This revealed PmGalP-expressing neurons in the septum, preoptic region, striatum, hypothalamus, prethalamus, and displaced cells in lateral areas of the telencephalon and diencephalon. In adults, the laterally migrated PmGalP-expressing neurons are observed in an area that extends from the ventral pallium to the lateral hypothalamus and prethalamus. The striatal and laterally migrated PmGalP-expressing cells of the telencephalon were not observed in larvae. Comparison with studies on jawed vertebrates reveals that the presence of septal and hypothalamic galanin-expressing neuronal populations is highly conserved in vertebrates. However, compared to mammals, there is a more restricted pattern of expression of the galanin transcript in the brain of lampreys. This work provides important new information on the early evolution of the galanin system in vertebrates and provides a genetic and neuroanatomical basis for functional analyses of the galanin system in lampreys.

12.
J Comp Neurol ; 526(6): 1017-1040, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29292495

RESUMO

The pretectum is a complex region of the caudal diencephalon which in adult zebrafish comprises both retinorecipient (parvocellular superficial, central, intercalated, paracommissural, and periventricular) and non-retinorecipient (magnocellular superficial, posterior, and accessory) pretectal nuclei distributed from periventricular to superficial regions. We conducted a comprehensive study of the connections of pretectal nuclei by using neuronal tracing with fluorescent carbocyanine dyes. This study reveals specialization of efferent connections of the various pretectal nuclei, with nuclei projecting to the optic tectum (paracommissural, central, and periventricular pretectal nuclei), the torus longitudinalis and the cerebellar corpus (paracommissural, central, and intercalated pretectal nuclei), the lateral hypothalamus (magnocellular superficial, posterior, and central pretectal nuclei), and the tegmental regions (accessory and superficial pretectal nuclei). With regard to major central afferents to the pretectum, we observed projections from the telencephalon to the paracommissural and central pretectal nuclei, from the optic tectum to the paracommissural, central, accessory and parvocellular superficial pretectal nuclei, from the cerebellum to the paracommissural and periventricular pretectal nuclei and from the nucleus isthmi to the parvocellular superficial and accessory pretectal nuclei. The parvocellular superficial pretectal nucleus sends conspicuous projections to the contralateral magnocellular superficial pretectal nucleus. The composite figure of results reveals large differences in connections of neighbor pretectal nuclei, indicating high degree of nuclear specialization. Our results will have important bearings in functional studies that analyze the relationship between specific circuits and behaviors in zebrafish. Comparison with results available in other species also reveals differences in the organization and connections of the pretectum in vertebrates.


Assuntos
Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Área Pré-Tectal/citologia , Peixe-Zebra/anatomia & histologia , Aminoácidos/metabolismo , Animais , Feminino , Masculino
13.
J Comp Neurol ; 525(17): 3683-3704, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28771712

RESUMO

We employed an anti-transducin antibody (Gαt-S), in combination with other markers, to characterize the Gαt-S-immunoreactive (ir) system in the CNS of the sea lamprey, Petromyzon marinus. Gαt-S immunoreactivity was observed in some neuronal populations and numerous fibers distributed throughout the brain. Double Gαt-S- and opsin-ir neurons (putative photoreceptors) are distributed in the hypothalamus (postoptic commissure nucleus, dorsal and ventral hypothalamus) and caudal diencephalon, confirming results of García-Fernández et al. (Cell and Tissue Research, 288, 267-278, 1997). Singly Gαt-S-ir cells were observed in the midbrain and hindbrain, increasing the known populations. Our results reveal for the first time in vertebrates the extensive innervation of many brain regions and the spinal cord by Gαt-S-ir fibers. The Gαt-S innervation of the habenula is very selective, fibers densely innervating the lamprey homologue of the mammalian medial nucleus (Stephenson-Jones et al., Proceedings of the National Academy of Sciences of the United States of America, 109, E164-E173, 2012), but not the lateral nucleus homologue. The lamprey neurohypophysis was not innervated by Gαt-S-ir fibers. We also analyzed by double immunofluorescence the relation of this system with other systems. A dopaminergic marker (TH), serotonin (5-HT) or GABA do not co-localize with Gαt-S-ir neurons although codistribution of fibers was observed. Codistribution of Gαt-S-ir fibers and isolectin-labeled extrabulbar primary olfactory fibers was observed in the striatum and hypothalamus. Neurobiotin retrograde transport from the spinal cord combined with immunofluorescence revealed spinal-projecting Gαt-S-ir reticular neurons in the caudal hindbrain. Present results in an ancient vertebrate reveal for the first time a collection of brain targets of Gαt-S-ir neurons, suggesting they might mediate non-visual modulation by light in many systems.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Petromyzon , Retina/metabolismo , Transducina/metabolismo , Fatores Etários , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Encéfalo/citologia , Encéfalo/embriologia , Larva , Opsinas/metabolismo , Petromyzon/anatomia & histologia , Petromyzon/embriologia , Petromyzon/metabolismo , Retina/citologia , Retina/embriologia , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Brain Behav Evol ; 89(1): 1-14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214875

RESUMO

The output of the cerebellar cortex is mainly released via cerebellar nuclei which vary in number and complexity among gnathostomes, extant vertebrates with a cerebellum. Cartilaginous fishes, a basal gnathostome lineage, show a conspicuous, well-organized cerebellar nucleus, unlike ray-finned fishes. To gain insight into the evolution and development of the cerebellar nucleus, we analyzed in the shark Scyliorhinus canicula (a chondrichthyan model species) the developmental expression of several genes coding for transcription factors (ScLhx5,ScLhx9,ScTbr1, and ScEn2) and the distribution of the protein calbindin, since all appear to be involved in cerebellar nuclei patterning in other gnathostomes. Three regions (subventricular, medial or central, and lateral or superficial) became recognizable in the cerebellar nucleus of this shark during development. Present genoarchitectonic and neurochemical data in embryos provide insight into the origin of the cerebellar nucleus in chondrichthyans and support a tripartite mediolateral organization of the cerebellar nucleus, as previously described in adult sharks. Furthermore, the expression pattern of ScLhx5,ScLhx9, and ScTbr1 in this shark, together with that of markers of proliferation, migration, and early differentiation of neurons, is compatible with the hypothesis that, as in mammals, different subsets of cerebellar nucleus neurons are originated from progenitors of 2 different sources: the ventricular zone of the cerebellar plate and the rhombic lip. We also present suggestive evidence that Lhx9 expression is involved in cerebellar nuclei patterning early on in gnathostome evolution, rather than representing an evolutionary innovation of the dentate nucleus in mammals, as previously hypothesized.


Assuntos
Evolução Biológica , Calbindinas/metabolismo , Núcleos Cerebelares , Cação (Peixe) , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Calbindinas/genética , Núcleos Cerebelares/embriologia , Núcleos Cerebelares/metabolismo , Cação (Peixe)/embriologia , Cação (Peixe)/genética , Cação (Peixe)/metabolismo , Proteínas de Peixes/genética
15.
J Comp Neurol ; 525(2): 333-362, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343143

RESUMO

The central connections of the gustatory/general visceral system of the adult zebrafish (Danio rerio) were examined by means of carbocyanine dye tracing. Main primary gustatory centers (facial and vagal lobes) received sensory projections from the facial and vagal nerves, respectively. The vagal nerve also projects to the commissural nucleus of Cajal, a general visceral sensory center. These primary centers mainly project on a prominent secondary gustatory and general visceral nucleus (SGN/V) located in the isthmic region. Secondary projections on the SGN/V were topographically organized, those of the facial lobe mainly ending medially to those of the vagal lobe, and those from the commissural nucleus ventrolaterally. Descending facial lobe projections to the medial funicular nucleus were also noted. Ascending fibers originating from the SGN/V mainly projected to the posterior thalamic nucleus and the lateral hypothalamus (lateral torus, lateral recess nucleus, hypothalamic inferior lobe diffuse nucleus) and an intermediate cell- and fiber-rich region termed here the tertiary gustatory nucleus proper, but not to a nucleus formerly considered as the zebrafish tertiary gustatory nucleus. The posterior thalamic nucleus, tertiary gustatory nucleus proper, and nucleus of the lateral recess gave rise to descending projections to the SGN/V and the vagal lobe. The connectivity between diencephalic gustatory centers and the telencephalon was also investigated. The present results showed that the gustatory connections of the adult zebrafish are rather similar to those reported in other cyprinids, excepting the tertiary gustatory nucleus. Similarities between the gustatory systems of zebrafish and other fishes are also discussed. J. Comp. Neurol. 525:333-362, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Vias Aferentes/citologia , Encéfalo/citologia , Peixe-Zebra/anatomia & histologia , Vias Aferentes/fisiologia , Animais , Encéfalo/fisiologia , Carbocianinas , Coloração e Rotulagem , Percepção Gustatória/fisiologia , Vísceras/inervação , Peixe-Zebra/fisiologia
16.
J Comp Neurol ; 525(4): 711-714, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27911000
17.
Front Neural Circuits ; 10: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199671

RESUMO

The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus "proper" in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014).


Assuntos
Vias Aferentes/fisiologia , Mapeamento Encefálico , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Habenula/fisiologia , Aminoácidos/metabolismo , Animais , Animais Geneticamente Modificados , Gânglios da Base , Calbindina 2/genética , Calbindina 2/metabolismo , Embrião não Mamífero , Lateralidade Funcional , Regulação da Expressão Gênica no Desenvolvimento/genética , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Habenula/citologia , Habenula/crescimento & desenvolvimento , Larva , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Bulbo Olfatório , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Front Neuroanat ; 10: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858609

RESUMO

Despite the importance of doublecortin (DCX) for the development of the nervous system, its expression in the retina of most vertebrates is still unknown. The key phylogenetic position of lampreys, together with their complex life cycle, with a long blind larval stage and an active predator adult stage, makes them an interesting model to study retinal development. Here, we studied the spatiotemporal pattern of expression of DCX in the retina of the sea lamprey. In order to characterize the DCX expressing structures, the expression of acetylated α-tubulin (a neuronal marker) and cytokeratins (glial marker) was also analyzed. Tract-tracing methods were used to label ganglion cells. DCX immunoreactivity appeared initially in photoreceptors, ganglion cells and in fibers of the prolarval retina. In larvae smaller than 100 mm, DCX expression was observed in photoreceptors, in cells located in the inner nuclear and inner plexiform layers (IPLs) and in fibers coursing in the nuclear and IPLs, and in the optic nerve (ON). In retinas of premetamorphic and metamorphic larvae, DCX immunoreactivity was also observed in radially oriented cells and fibers and in a layer of cells located in the outer part of the inner neuroblastic layer (INbL) of the lateral retina. Photoreceptors and fibers ending in the outer limitans membrane (OLM) showed DCX expression in adults. Some retinal pigment epithelium cells were also DCX immunoreactive. Immunofluorescence for α-tubulin in premetamorphic larvae showed coexpression in most of the DCX immunoreactive structures. No cells/fibers were found showing DCX and cytokeratins colocalization. The perikaryon of mature ganglion cells is DCX negative. The expression of DCX in sea lamprey retinas suggests that it could play roles in the migration of cells that differentiate in the metamorphosis, in the establishment of connections of ganglion cells and in the development of photoreceptors. Our results also suggest that the radial glia and retinal pigment epithelium cells of lampreys are neurogenic. Comparison of our observations with those reported in gnathostomes reveals similarities and interesting differences probably due to the peculiar development of the sea lamprey retina.

19.
Exp Eye Res ; 135: 81-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25925848

RESUMO

The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript was mainly observed in the myoid region of both short and long photoreceptors, and was also observed in bipolar, amacrine and ganglion cells. Some 5-HT-immunoreactive amacrine cells have already been reported in the adult lamprey retina. Our study supports the serotonergic phenotype of these amacrine cells of lampreys and also suggests that other retinal neurons could synthesize serotonin at levels not detectable by immunohistochemistry. The expression of the tph transcript in retinal photoreceptors of lampreys strongly suggests that they synthesize melatonin and that this pathway appeared early and has been conserved throughout evolution in vertebrates. The expression of tph and 5-ht1a in neuroblasts also indicates that serotonin might be playing developmental roles in the larval lamprey retina.


Assuntos
Petromyzon/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Retina/metabolismo , Triptofano Hidroxilase/metabolismo , Células Amácrinas/metabolismo , Animais , Imuno-Histoquímica , Hibridização In Situ , Larva/metabolismo , Células-Tronco Neurais/metabolismo , Células Fotorreceptoras de Vertebrados , RNA Mensageiro/metabolismo , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/metabolismo
20.
J Comp Neurol ; 523(15): 2211-32, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25846052

RESUMO

Amphioxus (Cephalochordata) belongs to the most basal extant chordates, and knowledge of their brain organization appears to be key to deciphering the early stages of evolution of vertebrate brains. Most comprehensive studies of the organization of the central nervous system of adult amphioxus have investigated the spinal cord. Some brain populations have been characterized via neurochemistry and electron microscopy, and the overall cytoarchitecture of the brain was studied by Ekhart et al. (2003; J. Comp. Neurol. 466:319-330) with general staining methods and retrograde transport from the spinal cord. Here, the cytoarchitecture of the brain of adult amphioxus Branchiostoma lanceolatum was reinvestigated by using acetylated tubulin immunohistochemistry, which specifically stains neurons and fibers, in combination with some ancillary methods. This method allowed reproducible staining and mapping of types of neuron, mostly in brain regions caudal to the entrance level of nerve 2, and its comparison with spinal cord populations. The brain populations studied and discussed in detail were the Retzius bipolar cells, lamellate cells, Joseph cells, various types of translumenal cells, somatic motoneurons, Rohde nucleus cells, small ventral multipolar neurons, and Edinger cells. These observations expand our knowledge of the distribution of cell types and provide additional data on the number of cells and the axonal tracts and commissural regions of the adult amphioxus brain. The results of this comprehensive study provide a framework for comparison of complex adult populations with the early brain neuronal populations revealed in developmental studies of the amphioxus.


Assuntos
Anfioxos/citologia , Neurônios/citologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Imuno-Histoquímica , Anfioxos/metabolismo , Microscopia Confocal , Neurônios/metabolismo , Fotomicrografia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA