Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Oncol ; 13: 1186539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274280

RESUMO

Arginine, glutamine, and the branched chain amino acids (BCAAs) are a focus of increased interest in the field of oncology due to their importance in the metabolic reprogramming of cancer cells. In the tumor microenvironment (TME), these amino acids serve to support the elevated biosynthetic and energy demands of cancer cells, while simultaneously maintaining the growth, homeostasis, and effector function of tumor-infiltrating immune cells. To escape immune destruction, cancer cells utilize a variety of mechanisms to suppress the cytotoxic activity of effector T cells, facilitating T cell exhaustion. One such mechanism is the ability of cancer cells to overexpress metabolic enzymes specializing in the catabolism of arginine, glutamine, and the BCAAs in the TME. The action of such enzymes supplies cancer cells with metabolic intermediates that feed into the TCA cycle, supporting energy generation, or providing precursors for purine, pyrimidine, and polyamine biosynthesis. Armed with substantial metabolic flexibility, cancer cells redirect amino acids from the TME for their own advantage and growth, while leaving the local infiltrating effector T cells deprived of essential nutrients. This review addresses the metabolic pressure that cancer cells exert over immune cells in the TME by up-regulating amino acid metabolism, while discussing opportunities for targeting amino acid metabolism for therapeutic intervention. Special emphasis is given to the crosstalk between arginine, glutamine, and BCAA metabolism in affording cancer cells with metabolic dominance in the TME.

2.
Immunometabolism (Cobham) ; 5(1): e00014, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36644500

RESUMO

Challenges regarding successful immunotherapy are associated with the heterogeneity of tumors and the complex interactions within the surrounding tumor microenvironment (TME), particularly those between immune and tumor cells. Of interest, T cells receive a myriad of environmental signals to elicit differentiation to effector subtypes, which is accompanied by metabolic reprogramming needed to satisfy the high energy and biosynthetic demands of their activated state. However, T cells are subjected to immunosuppressive signals and areas of oxygen and nutrient depletion in the TME, which causes T-cell exhaustion and helps tumor cells escape immune detection. The cytosolic and mitochondrial branched chain amino transferases, BCATc and BCATm, respectively, are responsible for the first step of the branched chain amino acid (BCAA) degradation, of which, metabolites are shunted into various metabolic processes. In recent years, BCAT isoenzymes have been investigated for their role in a variety of cancers found throughout the body; however, a gap of knowledge exists regarding the role BCAT isoenzymes play within immune cells of the TME. The aim of this review is to summarize recent findings about BCAAs and their catabolism at the BCAT step during T-cell metabolic reprogramming and to discuss the BCAT putative role in the anti-tumor immunity of T cells. Not only does this review acknowledges gaps pertaining to BCAA metabolism in the TME but it also identifies the practical application of BCAA metabolism in T cells in response to cancer and spotlights a potential target for pharmacological intervention.

3.
Environ Geochem Health ; 45(3): 925-940, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35381949

RESUMO

Primary bone and joint cancers are rare and understudied, yet these neoplasms are difficult to treat and impact all age groups. To explore the long-term changes in the occurrence of bone and joint cancers, patients diagnosed with these neoplasms between 1975 and 2016 were identified in the Surveillance Epidemiology and End Results of the National Cancer Institute of the USA. The age-adjusted incidence (AAIR) and mortality (AAMR) rates were calculated for three decades and compared to AAIR and AAMR in years 1975-1984. By using the population-based cancer registries of the USA, Iowa was identified as a state with increased cases of bone and joint malignancies. The bone and joint cancer cases in Iowa were correlated with the percentage of rural population, the average farmland size, or the residential radon levels. Results demonstrated that the mean AAIR of bone and joint cancers for US female and male patients (< 50 years of age) increased from 0.57 (95% C.I. 0.55-0.63) and 0.76 (95% C.I. 0.69-0.82) for years 1975-1984 to 0.71 (95% C.I. 0.66-0.76) and 0.94 (95% C.I. 0.87-1.07) for years 2005-2014, respectively. The increase in bone and joint cancer cases in Iowa positively correlated with the percentage rural population (R = 0.222, P < 0.02), and the average farmland size (R = 0.236, P < 0.02) but not the radon levels (R = - 0.038, P < 0.7). The findings revealed that patients younger than 50 years of age and those who resided in rural areas and engaged in farming were more likely to be diagnosed with primary bone and joint cancers.


Assuntos
Neoplasias , Radônio , Humanos , Masculino , Feminino , Pré-Escolar , Iowa/epidemiologia , População Rural , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Radônio/toxicidade , Radônio/análise , Incidência
4.
Biochem J ; 477(9): 1579-1599, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32297642

RESUMO

Osteosarcoma and chondrosarcoma are sarcomas of the bone and the cartilage that are primarily treated by surgical intervention combined with high toxicity chemotherapy. In search of alternative metabolic approaches to address the challenges in treating bone sarcomas, we assessed the growth dependence of these cancers on leucine, one of the branched-chain amino acids (BCAAs), and BCAA metabolism. Tumor biopsies from bone sarcoma patients revealed differential expression of BCAA metabolic enzymes. The cytosolic branched-chain aminotransferase (BCATc) that is commonly overexpressed in cancer cells, was down-regulated in chondrosarcoma (SW1353) in contrast with osteosarcoma (143B) cells that expressed both BCATc and its mitochondrial isoform BCATm. Treating SW1353 cells with gabapentin, a selective inhibitor of BCATc, further revealed that these cells failed to respond to gabapentin. Application of the structural analog of leucine, N-acetyl-leucine amide (NALA) to disrupt leucine uptake, indicated that all bone sarcoma cells used leucine to support their energy metabolism and biosynthetic demands. This was evident from the increased activity of the energy sensor AMP-activated protein kinase (AMPK), down-regulation of complex 1 of the mammalian target of rapamycin (mTORC1), and reduced cell viability in response to NALA. The observed changes were most profound in the 143B cells, which appeared highly dependent on cytosolic and mitochondrial BCAA metabolism. This study thus demonstrates that bone sarcomas rely on leucine and BCAA metabolism for energy and growth; however, the differential expression of BCAA enzymes and the presence of other carbon sources may dictate how efficiently these cancer cells take advantage of BCAA metabolism.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Condrossarcoma/metabolismo , Leucina/metabolismo , Osteossarcoma/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Metabolismo Energético , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transaminases/metabolismo
5.
Br J Cancer ; 119(8): 1009-1017, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318512

RESUMO

BACKGROUND: The mitochondrial branched-chain aminotransferase (BCATm) is a recently discovered cancer marker with a poorly defined role in tumour progression. METHODS: To understand how a loss of function of BCATm affects cancer, the global knockout mouse BCATmKO was challenged with EL-4 lymphoma under different diet compositions with varying amounts of branched-chain amino acids (BCAAs). Next, the growth and metabolism of EL-4 cells were studied in the presence of different leucine concentrations in the growth medium. RESULTS: BCATmKO mice experienced delayed tumour growth when fed standard rodent chow or a normal BCAA diet. Tumour suppression correlated with 37.6- and 18.9-fold increases in plasma and tumour BCAAs, 37.5% and 30.4% decreases in tumour glutamine and alanine, and a 3.5-fold increase in the phosphorylation of tumour AMPK in BCATmKO mice on standard rodent chow. Similar results were obtained with a normal but not with a choice BCAA diet. CONCLUSIONS: Global deletion of BCATm caused a dramatic build-up of BCAAs, which could not be utilised for energy or amino acid synthesis, ultimately delaying the growth of lymphoma tumours. Furthermore, physiological, but not high, leucine concentrations promoted the growth of EL-4 cells. BCATm and BCAA metabolism were identified as attractive targets for anti-lymphoma therapy.


Assuntos
Linfoma/patologia , Mitocôndrias/metabolismo , Transaminases/genética , Transaminases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Transplante de Neoplasias , Fosforilação
6.
Curr Opin Clin Nutr Metab Care ; 21(1): 64-70, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29211698

RESUMO

PURPOSE OF REVIEW: The current review aims to provide an update on the recent biomedical interest in oncogenic branched-chain amino acid (BCAA) metabolism, and discusses the advantages of using BCAAs and expression of BCAA-related enzymes in the treatment and diagnosis of cancers. RECENT FINDINGS: An accumulating body of evidence demonstrates that BCAAs are essential nutrients for cancer growth and are used by tumors in various biosynthetic pathways and as a source of energy. In addition, BCAA metabolic enzymes, such as the cytosolic branched-chain aminotransferase 1 (BCAT1) and mitochondrial branched-chain aminotransferase 2, have emerged as useful prognostic cancer markers. BCAT1 expression commonly correlates with more aggressive cancer growth and progression, and has attracted substantial scientific attention in the past few years. These studies have found the consequences of BCAT1 disruption to be heterogeneous; not all cancers share the same requirements for BCAA metabolites and the function of BCAT1 appears to vary between cancer types. SUMMARY: Both oncogenic mutations and cancer tissue-of-origin influence BCAA metabolism and expression of BCAA-associated metabolic enzymes. These new discoveries need to be taken into consideration during the development of new cancer therapies that target BCAA metabolism.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Regulação Neoplásica da Expressão Gênica , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transaminases/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Citosol/enzimologia , Citosol/metabolismo , Metabolismo Energético , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Transaminases/genética
7.
Nat Commun ; 8: 16040, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28699638

RESUMO

Branched-chain aminotransferases (BCAT) are enzymes that initiate the catabolism of branched-chain amino acids (BCAA), such as leucine, thereby providing macromolecule precursors; however, the function of BCATs in macrophages is unknown. Here we show that BCAT1 is the predominant BCAT isoform in human primary macrophages. We identify ERG240 as a leucine analogue that blocks BCAT1 activity. Selective inhibition of BCAT1 activity results in decreased oxygen consumption and glycolysis. This decrease is associated with reduced IRG1 levels and itaconate synthesis, suggesting involvement of BCAA catabolism through the IRG1/itaconate axis within the tricarboxylic acid cycle in activated macrophages. ERG240 suppresses production of IRG1 and itaconate in mice and contributes to a less proinflammatory transcriptome signature. Oral administration of ERG240 reduces the severity of collagen-induced arthritis in mice and crescentic glomerulonephritis in rats, in part by decreasing macrophage infiltration. These results establish a regulatory role for BCAT1 in macrophage function with therapeutic implications for inflammatory conditions.


Assuntos
Ciclo do Ácido Cítrico , Leucina/análogos & derivados , Leucina/farmacologia , Macrófagos Peritoneais/metabolismo , Transaminases/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Glomerulonefrite/tratamento farmacológico , Humanos , Hidroliases/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Ratos , Succinatos/metabolismo , Transaminases/antagonistas & inibidores
8.
J Nutr Biochem ; 40: 132-140, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27886623

RESUMO

Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo , Transaminases/genética , Aminoácidos de Cadeia Ramificada/sangue , Animais , Glicemia/metabolismo , Composição Corporal/genética , Feminino , Regulação da Expressão Gênica , Homeostase , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transaminases/metabolismo
9.
Adv Nutr ; 7(4): 798S-805S, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27422517

RESUMO

In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells.


Assuntos
Imunidade/fisiologia , Leucina/metabolismo , Ativação Linfocitária/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Transdução de Sinais/fisiologia , Linfócitos T/imunologia , Animais , Humanos , Fatores Imunológicos , Leucina/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transaminases/metabolismo
10.
J Biol Chem ; 289(27): 18793-804, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24847056

RESUMO

Here we show that expression of the cytosolic branched chain aminotransferase (BCATc) is triggered by the T cell receptor (TCR) of CD4(+) T cells. Induction of BCATc correlates with increased Leu transamination, whereas T cells from the BCATc(-/-) mouse exhibit lower Leu transamination and higher intracellular Leu concentrations than the cells from wild type (WT) mice. Induction of BCATc by TCR in WT cells is prevented by the calcineurin-nuclear factor of activated T cells (NFAT) inhibitor, cyclosporin A (CsA), suggesting that NFAT controls BCATc expression. Leu is a known activator of the mammalian target of rapamycin complex 1 (mTORC1). mTOR is emerging as a critical regulator of T cell activation, differentiation, and metabolism. Activated T cells from BCATc(-/-) mice show increased phosphorylation of mTORC1 downstream targets, S6 and 4EBP-1, indicating higher mTORC1 activation than in T cells from WT mice. Furthermore, T cells from BCATc(-/-) mice display higher rates of glycolysis, glycolytic capacity, and glycolytic reserve when compared with activated WT cells. These findings reveal BCATc as a novel regulator of T cell activation and metabolism and highlight the important role of Leu metabolism in T cells.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Citosol/enzimologia , Glicólise , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Transaminases/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/imunologia , Deleção de Genes , Regulação da Expressão Gênica , Leucina/metabolismo , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/metabolismo , Transaminases/deficiência , Transaminases/genética
11.
Hum Mol Genet ; 20(4): 631-40, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21098507

RESUMO

Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate in urea cycle disorder patients has been associated with a selective reduction in branched-chain amino acids (BCAA) in spite of adequate dietary protein intake. Based on this clinical observation, we investigated the potential of phenylbutyrate treatment to lower BCAA and their corresponding α-keto acids (BCKA) in patients with classic and variant late-onset forms of maple syrup urine disease (MSUD). We also performed in vitro and in vivo experiments to elucidate the mechanism for this effect. We found that BCAA and BCKA are both significantly reduced following phenylbutyrate therapy in control subjects and in patients with late-onset, intermediate MSUD. In vitro treatment with phenylbutyrate of control fibroblasts and lymphoblasts resulted in an increase in the residual enzyme activity, while treatment of MSUD cells resulted in the variable response which did not simply predict the biochemical response in the patients. In vivo phenylbutyrate increases the proportion of active hepatic enzyme and unphosphorylated form over the inactive phosphorylated form of the E1α subunit of the branched-chain α-keto acid dehydrogenase complex (BCKDC). Using recombinant enzymes, we show that phenylbutyrate prevents phosphorylation of E1α by inhibition of the BCKDC kinase to activate BCKDC overall activity, providing a molecular explanation for the effect of phenylbutyrate in a subset of MSUD patients. Phenylbutyrate treatment may be a valuable treatment for reducing the plasma levels of neurotoxic BCAA and their corresponding BCKA in a subset of MSUD patients and studies of its long-term efficacy are indicated.


Assuntos
Doença da Urina de Xarope de Bordo/tratamento farmacológico , Fenilbutiratos/uso terapêutico , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/sangue , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Adolescente , Adulto , Aminoácidos de Cadeia Ramificada/sangue , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Concentração Inibidora 50 , Cetoácidos/sangue , Cetoácidos/metabolismo , Masculino , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fenilbutiratos/metabolismo , Fenilbutiratos/farmacologia , Fosforilação/efeitos dos fármacos , Adulto Jovem
12.
Plant Signal Behav ; 4(4): 304-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19794846
13.
Plant Physiol ; 148(4): 1868-82, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931139

RESUMO

In plants, myoinositol signaling pathways have been associated with several stress, developmental, and physiological processes, but the regulation of these pathways is largely unknown. In our efforts to better understand myoinositol signaling pathways in plants, we have found that the WD40 repeat region of a myoinositol polyphosphate 5-phosphatase (5PTase13; At1g05630) interacts with the sucrose nonfermenting-1-related kinase (SnRK1.1) in the yeast two-hybrid system and in vitro. Plant SnRK1 proteins (also known as AKIN10/11) have been described as central integrators of sugar, metabolic, stress, and developmental signals. Using mutants defective in 5PTase13, we show that 5PTase13 can act as a regulator of SnRK1 activity and that regulation differs with different nutrient availability. Specifically, we show that under low-nutrient or -sugar conditions, 5PTase13 acts as a positive regulator of SnRK1 activity. In contrast, under severe starvation conditions, 5PTase13 acts as a negative regulator of SnRK1 activity. To delineate the regulatory interaction that occurs between 5PTase13 and SnRK1.1, we used a cell-free degradation assay and found that 5PTase13 is required to reduce the amount of SnRK1.1 targeted for proteasomal destruction under low-nutrient conditions. This regulation most likely involves a 5PTase13-SnRK1.1 interaction within the nucleus, as a 5PTase13:green fluorescent protein was localized to the nucleus. We also show that a loss of function in 5PTase13 leads to nutrient level-dependent reduction of root growth, along with abscisic acid (ABA) and sugar insensitivity. 5ptase13 mutants accumulate less inositol 1,4,5-trisphosphate in response to sugar stress and have alterations in ABA-regulated gene expression, both of which are consistent with the known role of inositol 1,4,5-trisphosphate in ABA-mediated signaling. We propose that by forming a protein complex with SnRK1.1 protein, 5PTase13 plays a regulatory role linking inositol, sugar, and stress signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucose/metabolismo , Fosfatos de Inositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Ácido Abscísico/farmacologia , Motivos de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Estabilidade Enzimática/genética , Expressão Gênica , Teste de Complementação Genética , Proteínas de Fluorescência Verde/análise , Mutagênese Insercional , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/análise , Transdução de Sinais
14.
Plant Mol Biol ; 67(4): 375-88, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18392779

RESUMO

The phosphatidylinositol phosphate signaling pathway is involved in many crucial cellular functions. The myo-inositol polyphosphate 5-phosphatases (5PTases) (E.C. 3.1.3.56) comprise a large protein family that hydrolyze 5-phosphates from a variety of phosphatidylinositol phosphate and inositol phosphate substrates. We previously reported that the At5PTase11 enzyme (At1g47510), which is one of the smallest predicted 5PTases found in any organism, encodes an active 5PTase whose activity is restricted to tris- and bis-, but not mono-phosphorylated phosphatidylinositol phosphate substrates containing a 5-phosphate. This is in contrast to other unrestricted Arabidopsis 5PTases, which also hydrolyze tris- and bis inositol phosphate molecules. To further explore the function of At5PTase11, we have characterized two T-DNA mutants in the At5PTase11 gene, and have complemented this mutant. Seed from 5ptase11 mutants germinate slower than wildtype seed and mutant seedlings have decreased hypocotyl growth as compared to wildtype seedlings when grown in the dark. This phenotype is the opposite of the increased hypocotyl growth phenotype previously described for other 5ptase mutants defective in inositol phosphate-specific 5PTase enzymes. By labeling the endogenous myo-inositol pool in 5ptase11 mutants, we correlated these hypocotyl growth changes with a small increase in the 5PTase11 substrate, phosphatidylinositol (4,5) bisphosphate, and decreases in the potential products of 5PTase11, phosphatidylinositol (3) phosphate and phosphatidylinositol (4) phosphate. Surprisingly, we also found that dark-grown 5ptase11 mutants contain increases in inositol (1,4,5) trisphosphate and an inositol bisphosphate that is not a substrate for recombinant 5PTase11. We present a model for regulation of hypocotyl growth by specific molecules found in this pathway.


Assuntos
Arabidopsis/embriologia , Monoéster Fosfórico Hidrolases/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/enzimologia , Sequência de Bases , Primers do DNA , Hidrólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA