Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 11(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841548

RESUMO

Orosensory perception of sweet stimulus is blunted in diet-induced obese (DIO) rodents. Although this alteration might contribute to unhealthy food choices, its origin remains to be understood. Cumulative evidence indicates that prebiotic manipulations of the gut microbiota are associated with changes in food intake by modulating hedonic and motivational drive for food reward. In the present study, we explore whether a prebiotic supplementation can also restore the taste sensation in DIO mice. The preference and licking behavior in response to various sucrose concentrations were determined using respectively two-bottle choice tests and gustometer analysis in lean and obese mice supplemented or not with 10% inulin-type fructans prebiotic (P) in a preventive manner. In DIO mice, P addition reduced the fat mass gain and energy intake, limited the gut dysbiosis and partially improved the sweet taste perception (rise both of sucrose preference and number of licks/10 s vs. non-supplemented DIO mice). No clear effect on orosensory perception of sucrose was found in the supplemented control mice. Therefore, a preventive P supplementation can partially correct the loss of sweet taste sensitivity found in DIO mice, with the efficiency of treatment being dependent from the nutritional status of mice (high fat diet vs. regular chow).


Assuntos
Suplementos Nutricionais , Preferências Alimentares/psicologia , Obesidade/psicologia , Prebióticos/administração & dosagem , Percepção Gustatória/fisiologia , Animais , Dieta Hiperlipídica , Ingestão de Alimentos/psicologia , Microbioma Gastrointestinal , Camundongos , Camundongos Obesos , Estado Nutricional , Obesidade/etiologia , Obesidade/microbiologia , Sacarose
2.
Biochimie ; 159: 112-121, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30102932

RESUMO

Diet-induced obesity (DIO) is associated with a decreased oral fat detection in rodents. This alteration has been explained by an impairment of the lipid-mediated signaling in taste bud cells (TBC). However, factors responsible for this defect remain elusive. Diet rich in saturated fatty acids is known to elicit a metabolic inflammation by promoting intestinal permeation to lipopolysaccharides (LPS), Gram-negative bacteria-derived endotoxins. To determine whether a local inflammation of the gustatory tissue might explain the obese-induced impairment of the oro-sensory detection of lipids, mice were subjected to a DIO protocol. Using a combination of behavioral tests, transcriptomic analyses of gustatory papillae and biochemical assays, we have found that i) DIO elicits a pro-inflammatory genic profile in the circumvallate papillae (CVP), known to house the highest density of lingual taste buds, ii) NFkB, a key player of inflammatory process, might play a role in this transcriptomic pattern, iii) plasma LPS levels are negatively correlated with the preference for oily solution, and iv) a chronic infusion of LPS at a level similar to that found in DIO mice is not sufficient to alter the spontaneous preference for fat in lean mice. Taken together these data bring the demonstration that a saturated high fat diet elicits an inflammatory response at the level of peripheral gustatory pathway and a LPS-induced low-grade endotoxemia alone does not explain the change in the preference for dietary lipids observed in DIO mice.


Assuntos
Comportamento Animal/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Endotoxemia , Lipopolissacarídeos/toxicidade , Obesidade , Transcriptoma/efeitos dos fármacos , Animais , Gorduras na Dieta/farmacologia , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Endotoxemia/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia
3.
J Lipid Res ; 56(2): 369-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25489006

RESUMO

Implication of the long-chain fatty acid (LCFA) receptor GPR120, also termed free fatty acid receptor 4, in the taste-guided preference for lipids is a matter of debate. To further unravel the role of GPR120 in the "taste of fat", the present study was conducted on GPR120-null mice and their wild-type littermates. Using a combination of morphological [i.e., immunohistochemical staining of circumvallate papillae (CVP)], behavioral (i.e., two-bottle preference tests, licking tests and conditioned taste aversion) and functional studies [i.e., calcium imaging in freshly isolated taste bud cells (TBCs)], we show that absence of GPR120 in the oral cavity was not associated with changes in i) gross anatomy of CVP, ii) LCFA-mediated increases in intracellular calcium levels ([Ca(2+)]i), iii) preference for oily and LCFA solutions and iv) conditioned avoidance of LCFA solutions. In contrast, the rise in [Ca(2+)]i triggered by grifolic acid, a specific GPR120 agonist, was dramatically curtailed when the GPR120 gene was lacking. Taken together, these data demonstrate that activation of lingual GPR120 and preference for fat are not connected, suggesting that GPR120 expressed in TBCs is not absolutely required for oral fat detection in mice.


Assuntos
Gorduras na Dieta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Animais , Cálcio/metabolismo , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Receptores Acoplados a Proteínas G/agonistas , Papilas Gustativas/citologia , Papilas Gustativas/efeitos dos fármacos
4.
Am J Clin Nutr ; 99(5): 975-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522446

RESUMO

BACKGROUND: The association between the orosensory detection of lipids, preference for fatty foods, and body mass index (BMI; in kg/m(2)) is controversial in humans. OBJECTIVE: We explored the oral lipid-sensing system and the orosensory-induced autonomic reflex system in lean and obese subjects. DESIGN: Lean (BMI: 19 to <25; n = 30) and obese (BMI >30; n = 29) age-matched men were enrolled. Their oral threshold sensitivity to linoleic acid (LA) was determined by using a 3-alternative forced-choice ascending procedure, and their eating habits were established by the analysis of 4 consecutive 24-h food-consumption diaries. The effect of brief oral lipid stimulations on plasma triglyceride [(TG)pl] concentrations was analyzed in overnight-fasted lean and obese individuals subjected to a whole-mouth stimulation (sip-and-spit procedure) with a control or 1% LA emulsions for 5 min according to a within-subject randomized design. RESULTS: A large distribution of LA detection was shown in both groups. Mean detection thresholds were 0.053% (wt:wt) and 0.071% (wt:wt) in lean and obese subjects, respectively. No relation between the LA detection threshold and BMI was observed. The 5 subjects who detected only the higher concentration of LA (5% wt:wt) or were unable to distinguish properly between control and LA emulsions were obese. An analysis of dietary habits showed that these obese LA nontasters consumed more lipids and energy than did all other subjects. Brief whole-mouth stimulations (sip-and-spit procedure) with a control or 1% LA emulsion revealed an LA-mediated rise in (TG)pl concentrations in overnight-fasted, lean subjects. The origin of this change seemed to be hepatic. This (TG)pl upregulation was not shown in obese subjects, which suggested that obesity led to disturbances in the oral-brainstem-periphery loop. CONCLUSION: Altogether, these data strongly suggest that obesity may interfere with the orosensory system responsible for the detection of free long-chain fatty acids in humans. This trial was registered at clinicaltrials.gov as NCT02028975.


Assuntos
Comportamento Alimentar , Preferências Alimentares , Ácido Linoleico/administração & dosagem , Obesidade/metabolismo , Limiar Sensorial , Paladar/fisiologia , Glicemia/metabolismo , Índice de Massa Corporal , Fenômenos Químicos , VLDL-Colesterol/sangue , Estudos Cross-Over , Registros de Dieta , Ingestão de Energia , Jejum , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
5.
Biochimie ; 96: 3-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23933093

RESUMO

Over the last decade, converging data have been accumulated both in rodents and humans, supporting the existence of a sixth taste modality devoted to the perception of dietary lipids. It is well known that the sense of taste is determinant for the food choice and that the overconsumption of highly palatable energy-dense foods contributes to the current obesity epidemic. Thus, an important issue in terms of Public Health is to understand the mechanisms by which the oro-sensory perception of fat is regulated. An overview of our current knowledge in this field of investigations is proposed in this mini-review.


Assuntos
Gorduras na Dieta/metabolismo , Obesidade/metabolismo , Paladar , Tecido Adiposo Branco/metabolismo , Animais , Retroalimentação Fisiológica , Comportamento Alimentar , Humanos , Obesidade/fisiopatologia , Papilas Gustativas/fisiologia
6.
J Lipid Res ; 54(9): 2485-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23840049

RESUMO

A relationship between orosensory detection of dietary lipids, regulation of fat intake, and body mass index was recently suggested. However, involved mechanisms are poorly understood. Moreover, whether obesity can directly modulate preference for fatty foods remains unknown. To address this question, exploration of the oral lipid sensing system was undertaken in diet-induced obese (DIO) mice. By using a combination of biochemical, physiological, and behavioral approaches, we found that i) the attraction for lipids is decreased in obese mice, ii) this behavioral change has an orosensory origin, iii) it is reversed in calorie-restricted DIO mice, revealing an inverse correlation between fat preference and adipose tissue size, iv) obesity suppresses the lipid-mediated downregulation of the lipid-sensor CD36 in circumvallate papillae, usually found during the refeeding of lean mice, and v) the CD36-dependent signaling cascade controlling the intracellular calcium levels ([Ca(2+)]i) in taste bud cells is decreased in obese mice. Therefore, obesity alters the lipid-sensing system responsible for the oral perception of dietary lipids. This phenomenon seems to take place through a CD36-mediated mechanism, leading to changes in eating behavior.


Assuntos
Antígenos CD36/metabolismo , Gorduras na Dieta/farmacologia , Obesidade/fisiopatologia , Percepção Gustatória/efeitos dos fármacos , Língua/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Comportamento Animal , Sinalização do Cálcio/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Preferências Alimentares/efeitos dos fármacos , Preferências Alimentares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/psicologia , Língua/citologia , Língua/efeitos dos fármacos
7.
J Lipid Res ; 53(11): 2256-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22904345

RESUMO

Glucagon-like peptide-1 (GLP-1) signaling modulates sweet-taste sensitivity in the mouse. Because circumvallate papillae (CVPs) express both GLP-1 and its receptor, a local regulation has been suggested. However, whether dietary lipids are involved in this regulation, as shown in the gut, is unknown. By using a combination of biochemical, immunohistochemical, and behavioral approaches, the present data i) confirm the role of GLP-1 signaling in the attraction for sucrose, ii) demonstrate that minute quantities of long-chain FAs (LCFAs) reinforce the attraction for sucrose in a GLP-1 receptor-dependent manner, iii) suggest an involvement of the LCFA receptor GPR120 expressed in taste buds in this system, and iv) support the existence of a regulation by GLP-1 of the lipid sensing mediated by lingual CD36. Therefore, oro-sensory detection of LCFAs may affect sweet and fatty taste responsiveness by controlling the secretion of lingual GLP-1. This regulatory loop, probably triggered by the LCFA-GPR120 interaction, might contribute to the high palatability of foods rich both in fat and sugar.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Animais , Western Blotting , Antígenos CD36/genética , Antígenos CD36/metabolismo , Linhagem Celular Tumoral , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/genética , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA