Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cancer Ther ; 18(10): 1696-1707, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31575759

RESUMO

BOS172722 (CCT289346) is a highly potent, selective, and orally bioavailable inhibitor of spindle assembly checkpoint kinase MPS1. BOS172722 treatment alone induces significant sensitization to death, particularly in highly proliferative triple-negative breast cancer (TNBC) cell lines with compromised spindle assembly checkpoint activity. BOS172722 synergizes with paclitaxel to induce gross chromosomal segregation defects caused by MPS1 inhibitor-mediated abrogation of the mitotic delay induced by paclitaxel treatment. In in vivo pharmacodynamic experiments, BOS172722 potently inhibits the spindle assembly checkpoint induced by paclitaxel in human tumor xenograft models of TNBC, as measured by inhibition of the phosphorylation of histone H3 and the phosphorylation of the MPS1 substrate, KNL1. This mechanistic synergy results in significant in vivo efficacy, with robust tumor regressions observed for the combination of BOS172722 and paclitaxel versus either agent alone in long-term efficacy studies in multiple human tumor xenograft TNBC models, including a patient-derived xenograft and a systemic metastasis model. The current target indication for BOS172722 is TNBC, based on their high sensitivity to MPS1 inhibition, the well-defined clinical patient population with high unmet need, and the synergy observed with paclitaxel.


Assuntos
Pontos de Checagem do Ciclo Celular , Pirimidinas/farmacologia , Fuso Acromático/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Disponibilidade Biológica , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos Humanos/genética , Sinergismo Farmacológico , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/química , Fuso Acromático/efeitos dos fármacos , Triazóis/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Oncotarget ; 9(28): 19525-19542, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29731963

RESUMO

Accurate chromosome segregation is dependent on the spindle assembly checkpoint (SAC). In current models, the key direct role of Aurora B in the SAC has been suggested to be to promote rapid kinetochore localisation of MPS1, allowing MPS1 to generate the checkpoint signal. However, Aurora B is also thought to play an indirect role in the SAC through the destabilisation of kinetochore-microtubule (KT-MT) attachments. Here, we demonstrate that Aurora B activity is not required for the kinetochore recruitment of the majority of SAC proteins. More importantly, we show that the primary role of Aurora B in the SAC is to prevent the premature removal of SAC proteins from the kinetochore, which is strictly dependent on KT-MT interactions. Moreover, in the presence of KT-MT interactions, Aurora B inhibition silences a persistent SAC induced by tethering MPS1 to the kinetochore. This explains the highly synergistic interaction between Aurora B and MPS1 inhibitors to override the SAC, which is lost when cells are pre-arrested in nocodazole. Furthermore, we show that Aurora B and MPS1 inhibitors synergistically kill a panel of breast and colon cancer cell lines, including cells that are otherwise insensitive to Aurora B inhibitors alone. These data demonstrate that the major role of Aurora B in SAC is to prevent the removal of SAC proteins from tensionless kinetochores, thus inhibiting premature SAC silencing, and highlights a therapeutic strategy through combination of Aurora B and MPS1 inhibitors.

3.
Br J Cancer ; 116(9): 1166-1176, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28334731

RESUMO

BACKGROUND: The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. METHODS: To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. RESULTS: CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. CONCLUSIONS: CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850.


Assuntos
Proteínas de Ciclo Celular/genética , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Células HCT116 , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Lett ; 322(1): 8-17, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22342684

RESUMO

With regard to cancer development the centrosome has been the center of attraction of scientists for already more than a 100 years. After the initial assumption that amplified centrosomes and abnormal mitotic arrangements might be a cause of cancer at the beginning of the last century, enormous efforts have been undertaken to clarify the relevance of centrosome amplification in tumorigenesis. In the meantime, centrosome amplification has been observed in most, both solid and hematological, cancer entities and by now is viewed as a "hallmark" of cancer cells. In this review we summarize basics in centrosome biology and what is known about the emergence of amplified centrosomes. In addition, we discuss how centrosome amplification might cause aneuploidy thereby leading to malignant transformation of cells. Furthermore, we present recent insights into the role of centrosome amplification in tumor formation based on work in model systems.


Assuntos
Transformação Celular Neoplásica , Centrossomo/fisiologia , Aneuploidia , Animais , Instabilidade Cromossômica , Humanos , Neoplasias/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA