Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456804

RESUMO

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Clin Cancer Res ; 29(16): 3237-3249, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37289191

RESUMO

PURPOSE: Therapeutic resistance to frontline therapy develops rapidly in small cell lung cancer (SCLC). Treatment options are also limited by the lack of targetable driver mutations. Therefore, there is an unmet need for developing better therapeutic strategies and biomarkers of response. Aurora kinase B (AURKB) inhibition exploits an inherent genomic vulnerability in SCLC and is a promising therapeutic approach. Here, we identify biomarkers of response and develop rational combinations with AURKB inhibition to improve treatment efficacy. EXPERIMENTAL DESIGN: Selective AURKB inhibitor AZD2811 was profiled in a large panel of SCLC cell lines (n = 57) and patient-derived xenograft (PDX) models. Proteomic and transcriptomic profiles were analyzed to identify candidate biomarkers of response and resistance. Effects on polyploidy, DNA damage, and apoptosis were measured by flow cytometry and Western blotting. Rational drug combinations were validated in SCLC cell lines and PDX models. RESULTS: AZD2811 showed potent growth inhibitory activity in a subset of SCLC, often characterized by, but not limited to, high cMYC expression. Importantly, high BCL2 expression predicted resistance to AURKB inhibitor response in SCLC, independent of cMYC status. AZD2811-induced DNA damage and apoptosis were suppressed by high BCL2 levels, while combining AZD2811 with a BCL2 inhibitor significantly sensitized resistant models. In vivo, sustained tumor growth reduction and regression was achieved even with intermittent dosing of AZD2811 and venetoclax, an FDA-approved BCL2 inhibitor. CONCLUSIONS: BCL2 inhibition overcomes intrinsic resistance and enhances sensitivity to AURKB inhibition in SCLC preclinical models.


Assuntos
Antineoplásicos , Aurora Quinase B , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-bcl-2 , Carcinoma de Pequenas Células do Pulmão , Humanos , Antineoplásicos/uso terapêutico , Apoptose , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteômica , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Pediatr Pharmacol Ther ; 26(3): 311-314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833635

RESUMO

Diphenhydramine (Benadryl) is a first-generation antihistamine that is used primarily to treat allergic reactions including anaphylaxis, urticaria, and allergic rhinitis. Despite its availability as an over-the-counter medication, toxicity may occur with its use especially when administered in large doses or via the intravenous route. We present a 3-month-old infant with Trisomy 21 who suffered a cardiac arrest immediately following administration of a single 1.25 mg/kg dose of intravenous diphenhydramine, prescribed for sedation in the Pediatric ICU setting. The potential cardiovascular and respiratory effects of diphenhydramine are presented, previous reports of life-threatening adverse effects reviewed, and options to limit these effects discussed.

4.
J Pediatr Intensive Care ; 9(2): 106-112, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32351764

RESUMO

Coagulation disturbances frequently occur in critically ill children. Four-factor prothrombin complex concentrate (4F-PCC) may have a potential role in managing these patients while avoiding concerns associated with fresh frozen plasma. However, data on this product in critically ill children is scarce. We retrospectively identified 24 critically ill pediatric patients who received 4F-PCC. The primary indication was to correct coagulopathy and control bleeding in the trauma or surgical setting. 4F-PCC effectively decreased the international normalized ratio level, a surrogate marker of hemostasis. Further study is warranted to identify efficacy, indications, optimal dosing, and adverse effects in the critically ill pediatric patients.

5.
Nat Commun ; 10(1): 5167, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727888

RESUMO

BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína bcl-X/metabolismo
6.
Elife ; 82019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294695

RESUMO

Overexpression of anti-apoptotic proteins MCL1 and Bcl-xL are frequently observed in many cancers. Inhibitors targeting MCL1 are in clinical development, however numerous cancer models are intrinsically resistant to this approach. To discover mechanisms underlying resistance to MCL1 inhibition, we performed multiple flow-cytometry based genome-wide CRISPR screens interrogating two drugs that directly (MCL1i) or indirectly (CDK9i) target MCL1. Remarkably, both screens identified three components (CUL5, RNF7 and UBE2F) of a cullin-RING ubiquitin ligase complex (CRL5) that resensitized cells to MCL1 inhibition. We find that levels of the BH3-only pro-apoptotic proteins Bim and Noxa are proteasomally regulated by the CRL5 complex. Accumulation of Noxa caused by depletion of CRL5 components was responsible for re-sensitization to CDK9 inhibitor, but not MCL1 inhibitor. Discovery of a novel role of CRL5 in apoptosis and resistance to multiple types of anticancer agents suggests the potential to improve combination treatments.


Assuntos
Proteínas Culina/genética , Quinase 9 Dependente de Ciclina/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/genética , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/genética
7.
Horm Cancer ; 9(6): 399-407, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302736

RESUMO

To investigate changes in estrogen receptor alpha (ERα) signaling during progression of endometriosis to endometriosis-associated ovarian cancer (EAOC) as a driver of malignant transformation. We procured tissue samples of normal endometrium, endometriosis (benign, atypical, concurrent with EAOC), and EAOC. We evaluated expression of a 236-gene signature of estrogen signaling. ANOVA and unsupervised clustering were used to identify gene expression profiles across disease states. These profiles were compared to profiles of estrogen regulation in cancer models from the Gene Expression Omnibus (GEO). Gene Set Enrichment Analysis (GSEA) was performed to determine whether gene expression in EAOC was consistent with ERα activity. ANOVA revealed 158 differentially expressed genes (q < 0.05) and unsupervised clustering identified five distinct gene clusters. The estrogen signaling profile of EAOC was not consistent with activated ERα in pre-clinical models. Gene set enrichment analysis did not identify signatures of activated ERα in EAOC but instead identified expression patterns consistent with loss of ERα function and development of endocrine resistance. Gene expression data suggest that ERα signaling becomes inactivated throughout the progression of endometriosis to EAOC. The gene expression pattern in EAOC is more consistent with profiles of endocrine resistance.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Endometriose/patologia , Receptor alfa de Estrogênio/metabolismo , Neoplasias Ovarianas/patologia , Adulto , Idoso , Carcinoma Epitelial do Ovário/metabolismo , Progressão da Doença , Endometriose/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma
8.
Clin Cancer Res ; 23(14): 3802-3812, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28073843

RESUMO

Purpose: High-grade serous ovarian cancer (HGSOC) is an aggressive disease with few available targeted therapies. Despite high expression of estrogen receptor-alpha (ERα) in approximately 80% of HGSOC and some small but promising clinical trials of endocrine therapy, ERα has been understudied as a target in this disease. We sought to identify hormone-responsive, ERα-dependent HGSOC.Experimental Design: We characterized endocrine response in HGSOC cells across culture conditions [ two-dimensional (2D), three-dimensional (3D), forced suspension] and in patient-derived xenograft (PDX) explants, assessing proliferation and gene expression. Estrogen-regulated transcriptome data were overlapped with public datasets to develop a comprehensive panel of ERα target genes. Expression of this panel and ERα H-score were assessed in HGSOC samples from patients who received endocrine therapy. Time on endocrine therapy was used as a surrogate for clinical response.Results: Proliferation is ERα-regulated in HGSOC cells in vitro and in vivo, and is partly dependent on 3D context. Transcriptomic studies identified genes shared by cell lines and PDX explants as ERα targets. The selective ERα downregulator (SERD) fulvestrant is more effective than tamoxifen in blocking ERα action. ERα H-score is predictive of efficacy of endocrine therapy, and this prediction is further improved by inclusion of target gene expression, particularly IGFBP3Conclusions: Laboratory models corroborate intertumor heterogeneity of endocrine response in HGSOC but identify features associated with functional ERα and endocrine responsiveness. Assessing ERα function (e.g., IGFBP3 expression) in conjunction with H-score may help select patients who would benefit from endocrine therapy. Preclinical data suggest that SERDs might be more effective than tamoxifen. Clin Cancer Res; 23(14); 3802-12. ©2017 AACR.


Assuntos
Estradiol/análogos & derivados , Receptor alfa de Estrogênio/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Ovarianas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Genome Med ; 8(1): 128, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27964748

RESUMO

BACKGROUND: Estrogen receptor (ER) activity is critical for the development and progression of the majority of breast cancers. It is known that ER is differentially bound to DNA leading to transcriptomic and phenotypic changes in different breast cancer models. We investigated whether single nucleotide variants (SNVs) in ER binding sites (regSNVs) contribute to ER action through changes in the ER cistrome, thereby affecting disease progression. Here we developed a computational pipeline to identify SNVs in ER binding sites using chromatin immunoprecipitation sequencing (ChIP-seq) data from ER+ breast cancer models. METHODS: ER ChIP-seq data were downloaded from the Gene Expression Omnibus (GEO). GATK pipeline was used to identify SNVs and the MACS algorithm was employed to call DNA-binding sites. Determination of the potential effect of a given SNV in a binding site was inferred using reimplementation of the is-rSNP algorithm. The Cancer Genome Atlas (TCGA) data were integrated to correlate the regSNVs and gene expression in breast tumors. ChIP and luciferase assays were used to assess the allele-specific binding. RESULTS: Analysis of ER ChIP-seq data from MCF7 cells identified an intronic SNV in the IGF1R gene, rs62022087, predicted to increase ER binding. Functional studies confirmed that ER binds preferentially to rs62022087 versus the wild-type allele. By integrating 43 ER ChIP-seq datasets, multi-omics, and clinical data, we identified 17 regSNVs associated with altered expression of adjacent genes in ER+ disease. Of these, the top candidate was in the promoter of the GSTM1 gene and was associated with higher expression of GSTM1 in breast tumors. Survival analysis of patients with ER+ tumors revealed that higher expression of GSTM1, responsible for detoxifying carcinogens, was correlated with better outcome. CONCLUSIONS: In conclusion, we have developed a computational approach that is capable of identifying putative regSNVs in ER ChIP-binding sites. These non-coding variants could potentially regulate target genes and may contribute to clinical prognosis in breast cancer.


Assuntos
Alelos , Neoplasias da Mama , Receptor alfa de Estrogênio , Proteínas de Neoplasias , Polimorfismo de Nucleotídeo Único , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
10.
Gynecol Oncol ; 141(2): 348-356, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26946093

RESUMO

OBJECTIVE: Nuclear receptors (NRs) play a vital role in the development and progression of several cancers including breast and prostate. Using TCGA data, we sought to identify critical nuclear receptors in high grade serous ovarian cancers (HGSOC) and to confirm these findings using in vitro approaches. METHODS: In silico analysis of TCGA data was performed to identify relevant NRs in HGSOC. Ovarian cancer cell lines were screened for NR expression and functional studies were performed to determine the significance of these NRs in ovarian cancers. NR expression was analyzed in ovarian cancer tissue samples using immunohistochemistry to identify correlations with histology and stage of disease. RESULTS: The NR4A family of NRs was identified as a potential driver of ovarian cancer pathogenesis. Overexpression of NR4A1 in particular correlated with worse progression free survival. Endogenous expression of NR4A1 in normal ovarian samples was relatively high compared to that of other tissue types, suggesting a unique role for this orphan receptor in the ovary. Expression of NR4A1 in HGSOC cell lines as well as in patient samples was variable. NR4A1 primarily localized to the nucleus in normal ovarian tissue while co-localization within the cytoplasm and nucleus was noted in ovarian cancer cell lines and patient tissues. CONCLUSIONS: NR4A1 is highly expressed in a subset of HGSOC samples from patients that have a worse progression free survival. Studies to target NR4A1 for therapeutic intervention should include HGSOC.


Assuntos
Neoplasias Epiteliais e Glandulares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Neoplasias Ovarianas/metabolismo , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Genoma , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Neoplasias Epiteliais e Glandulares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Neoplasias Ovarianas/genética , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Mol Cell Endocrinol ; 418 Pt 3: 322-33, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276546

RESUMO

Endometrial and ovarian cancers are estrogen-dependent gynecologic malignancies. Although many are estrogen receptor (ER) positive, treatment with the selective estrogen receptor modulator (SERM) tamoxifen, a tissue selective partial-agonist, has demonstrated only modest clinical benefit. Selective estrogen receptor downregulators (SERDs) are pure ER antagonists showing a benefit for advanced ER positive breast cancer, which has bolstered their potential use for ER positive gynecologic malignancies. We summarize these preclinical and clinical data, suggesting that a subpopulation of patients with endometrial or ovarian cancer exists in which treatment with SERDs results in improved outcome. However, the full potential of SERDs for a gynecologic malignancies will be realized only when the appropriate predictive biomarkers are identified. Additionally, a further understanding ER signaling in the context of ovarian and endometrial tissues that appear to involve c-Src and other kinase pathways is needed to successfully address the emergence of resistance with rationally designed combination therapies.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Neoplasias do Endométrio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
12.
Endocr Relat Cancer ; 19(6): R255-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23045324

RESUMO

Ovarian cancer is the sixth most common cancer worldwide among women in developed countries and the most lethal of all gynecologic malignancies. There is a critical need for the introduction of targeted therapies to improve outcome. Epidemiological evidence suggests a critical role for steroid hormones in ovarian tumorigenesis. There is also increasing evidence from in vitro studies that estrogen, progestin, and androgen regulate proliferation and invasion of epithelial ovarian cancer cells. Limited clinical trials have shown modest response rates; however, they have consistently identified a small subset of patients that respond very well to endocrine therapy with few side effects. We propose that it is timely to perform additional well-designed trials that should include biomarkers of response.


Assuntos
Hormônios/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Antineoplásicos Hormonais/uso terapêutico , Carcinoma Epitelial do Ovário , Feminino , Humanos , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/epidemiologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/epidemiologia , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA