Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Geriatr Oncol ; 15(4): 101770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631243

RESUMO

INTRODUCTION: Older patients with cancer range from fit to frail with various comorbidities and resilience to chemotherapy. Besides nausea and fatigue, a significant number of patients experience dizziness and impaired walking balance after chemotherapy, which can have great impact on their functional ability and health related quality of life. Symptoms are easily overlooked and therefore often underreported and managed, which is why symptoms could end up as long-lasting side effects. The aim of this study is to investigate the development of dizziness, decline in walking balance, and sarcopenia and the effect of a comprehensive geriatric assessment and 12 weeks of group-based exercise on these symptoms. The exercise intervention includes vestibular and balance exercises, and progressive resistance training, to counteract the symptoms in older patients with colorectal cancer treated with chemotherapy. MATERIALS AND METHODS: This is a randomized controlled trial including patients ≥65 years initiating (neo)adjuvant or first-line palliative chemotherapy for colorectal cancer. Patients will undergo a comprehensive assessment program including measures of vestibular function, balance, muscle strength, mass, and endurance, peripheral and autonomic nerve function, and subjective measures of dizziness, concern of falling, and health related quality of life. Tests will be performed at baseline, 12, and 24 weeks. Patients will be placed in three different randomized controlled trials depending on chemotherapy regimen and randomized 1:1 to comprehensive geriatric assessment and exercise three times/week or control. Participants in both groups will continue with usual care, including standardized oncological treatment. In total, 150 patients are needed to assess the two primary outcomes of (1) maintenance of walking balance assessed with Dynamic Gait Index and (2) lower limb strength and endurance assessed with 30 Second Sit-to-Stand Test at 12 weeks. The primary outcomes will be analyzed using a mixed linear regression model investigating the between-group differences. DISCUSSION: Trial enrollment began in April 2023 and is the first trial to evaluate reasons for dizziness, decline in walking balance, and sarcopenia in older patients receiving chemotherapy. The trial will provide new and valuable knowledge in how to assess, manage, and prevent dizziness, decline in walking balance, and sarcopenia in older patients with colorectal cancer. TRIAL REGISTRATION: The Regional Ethics Committee (j.nr. H-22064206). Danish Data Protection Agency (P-2023-86) and ClinicalTrials.gov (NCT05710809).


Assuntos
Neoplasias Colorretais , Equilíbrio Postural , Ensaios Clínicos Controlados Aleatórios como Assunto , Sarcopenia , Vertigem , Humanos , Sarcopenia/terapia , Idoso , Neoplasias Colorretais/complicações , Qualidade de Vida , Tontura , Avaliação Geriátrica , Terapia por Exercício/métodos , Masculino , Feminino , Treinamento Resistido/métodos , Idoso de 80 Anos ou mais
2.
Sci Transl Med ; 16(740): eadl4317, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536937

RESUMO

The 2022-2023 mpox outbreak triggered vaccination efforts using smallpox vaccines that were approved for mpox, including modified vaccinia Ankara (MVA; JYNNEOS), which is a safer alternative to live replicating vaccinia virus (ACAM2000). Here, we compare the immunogenicity and protective efficacy of JYNNEOS by the subcutaneous or intradermal routes, ACAM2000 by the percutaneous route, and subunit Ad35 vector-based L1R/B5R or L1R/B5R/A27L/A33R vaccines by the intramuscular route in rhesus macaques. All vaccines provided robust protection against high-dose intravenous mpox virus challenge with the current outbreak strain, with ACAM2000 providing near complete protection and JYNNEOS and Ad35 vaccines providing robust but incomplete protection. Protection correlated with neutralizing antibody responses as well as L1R/M1R- and B5R/B6R-specific binding antibody responses, although additional immune responses likely also contributed to protection. This study demonstrates the protective efficacy of multiple vaccine platforms against mpox virus challenge, including both current clinical vaccines and vectored subunit vaccines.


Assuntos
Mpox , Vacina Antivariólica , Animais , Vaccinia virus/genética , Macaca mulatta , Anticorpos Antivirais , Vacinas de Subunidades Antigênicas
3.
Vaccine ; 42(5): 1122-1135, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262808

RESUMO

BACKGROUND: With SARS-CoV-2 continuing to evolve, there is a need to adapt COVID-19 vaccines to enhance mucosal immunity and better address immune-evasive variants. This pilot study was performed in mice and rhesus macaques to compare Advax-adjuvanted monovalent and bivalent recombinant spike protein vaccines, including when delivered via a combination of intramuscular (IM) and intrapulmonary (IPM) or oral routes. METHODS: Mice were first used to compare the immunogenicity of monovalent and bivalent vaccines containing a variety of spike protein variants. Then, rhesus macaques (n = 23) were divided into 5 groups to receive COVID-19 vaccines via different routes. Clinical signs, local vaccination site reactions, body weight, food consumption, serum, alveolar lavage, nasal and oral antibody levels, and nasal and alveolar lavage virus loads were assessed in response to a heterologous Omicron BA.5 virus challenge. RESULTS: The Wuhan + Mu bivalent vaccine gave the most broadly cross-neutralizing antibody responses. Robust serum neutralizing antibodies against Wuhan, Delta and Lambda variants were obtained, but BA.5 neutralizing antibodies were not detectable pre-challenge. Overall, the IM x3 and the IM x2 plus oral x2 vaccines delivered the best protection, with reduced lung virus load versus unimmunized controls across Days 2, 4 and 7. CONCLUSIONS: Advax-adjuvanted monovalent or bivalent recombinant spike protein vaccines given via parenteral and/or mucosal routes protected against a heterologous BA.5 challenge, despite absent serum BA.5 neutralizing antibody, pre-challenge. The possibility of using an oral Advax-adjuvanted protein booster to provide broad protection against newer SARS-CoV-2 variants warrants further investigation.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Macaca mulatta , Projetos Piloto , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Vacinas de Subunidades Proteicas , Proteínas Recombinantes , Anticorpos Antivirais , Imunogenicidade da Vacina
4.
Vaccine ; 42(2): 339-351, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38071106

RESUMO

Intranasal mucosal vaccines can more effectively induce mucosal immune responses against SARS-CoV-2. Here, we show in hamsters that an intranasal subunit mucosal vaccine boost with the beta variant S1 can prevent weight loss, in addition to reducing viral load, which cannot be studied in macaques that don't develop COVID-like disease. Protective efficacy against both viral load and weight loss correlated with serum antibody titers. A sex bias was detected in that immune responses and protection against viral load were greater in females than males. We also found that priming with S1 from the Wuhan strain elicited lower humoral immune responses against beta variant and led to less protection against beta viral challenge, suggesting the importance of matched antigens. The greater efficacy of mucosal vaccines in the upper respiratory tract and the need to consider sex differences in vaccine protection are important in the development of future improved COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Masculino , Animais , Cricetinae , Humanos , Sexismo , SARS-CoV-2 , COVID-19/prevenção & controle , Macaca , Redução de Peso , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
5.
Nature ; 626(7998): 385-391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096903

RESUMO

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Imunização Secundária , Macaca mulatta , SARS-CoV-2 , Animais , Humanos , Administração Intranasal , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Citocinas/imunologia , Imunidade nas Mucosas/imunologia , Imunização Secundária/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Injeções Intramusculares , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Traqueia/imunologia , Traqueia/virologia
6.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38076895

RESUMO

SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.

7.
Cell Rep Med ; 4(11): 101292, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992687

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. Long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central to treating type 2 diabetes (T2D); however, these therapies are burdensome, as they must be taken daily or weekly. Technological innovations that enable less frequent administrations would reduce patient burden and increase patient compliance. Herein, we leverage an injectable hydrogel depot technology to develop a GLP-1 RA drug product capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirm that one injection of hydrogel-based therapy sustains exposure of GLP-1 RA over 42 days, corresponding to a once-every-4-months therapy in humans. Hydrogel therapy maintains management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug. This long-acting GLP-1 RA treatment is a promising therapy for more effective T2D management.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Animais , Ratos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hidrogéis/uso terapêutico , Biomimética , Peptídeo 1 Semelhante ao Glucagon
8.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986823

RESUMO

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

9.
Cell ; 186(21): 4652-4661.e13, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734373

RESUMO

The mpox outbreak of 2022-2023 involved rapid global spread in men who have sex with men. We infected 18 rhesus macaques with mpox by the intravenous, intradermal, and intrarectal routes and observed robust antibody and T cell responses following all three routes of infection. Numerous skin lesions and high plasma viral loads were observed following intravenous and intradermal infection. Skin lesions peaked on day 10 and resolved by day 28 following infection. On day 28, we re-challenged all convalescent and 3 naive animals with mpox. All convalescent animals were protected against re-challenge. Transcriptomic studies showed upregulation of innate and inflammatory responses and downregulation of collagen formation and extracellular matrix organization following challenge, as well as rapid activation of T cell and plasma cell responses following re-challenge. These data suggest key mechanistic insights into mpox pathogenesis and immunity. This macaque model should prove useful for evaluating mpox vaccines and therapeutics.


Assuntos
Macaca mulatta , Monkeypox virus , Mpox , Animais , Humanos , Masculino , Homossexualidade Masculina , Mpox/imunologia , Minorias Sexuais e de Gênero , Monkeypox virus/fisiologia
10.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503026

RESUMO

SARS-CoV-2 has the capacity to evolve mutations to escape vaccine-and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool. Here, we challenged rhesus macaques with SARS-CoV-2 Delta and simultaneously treated them with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment gave equivalent protection in upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 did not block the development of memory responses to Delta and did not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.

11.
Front Immunol ; 14: 1154496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020550

RESUMO

Introduction: Adjuvant plays an important role in directing the immune responses induced by vaccines. In previous studies, we have shown that a mucosal SARS-CoV-2 S1 subunit vaccine adjuvanted with a combination of CpG, Poly I:C and IL-15 (named CP15) induced effective mucosal and systemic immunity and conferred nearly sterile protection against SARS-CoV-2 viral replication in macaque models. Methods: In this study, we used a hamster model, which mimics the human scenario and reliably exhibits severe SARS-CoV-2 disease similar to hospitalized patients, to investigate the protection efficacy of the vaccines against COVID-19 disease. We compared the weight loss, viral loads (VLs), and clinical observation scores of three different vaccine regimens. All three regimens consisted of priming/boosting with S1 subunit vaccines, but adjuvanted with alum and/or CP15 administrated by either intramuscular (IM) or intranasal (IN) routes: Group 1 was adjuvanted with alum/alum administrated IM/IM; Group 2 was alum-IM/CP15-IN; and Group 3 was CP15-IM/CP15-IN. Results: After challenge with SARS-CoV-2 WA strain, we found that the alum/CP15 group showed best protection against weight loss, while the CP15 group demonstrated best reduction of oral SARS-CoV-2 VLs, suggesting that the protection profiles were different. Sex differences for VL and clinical scores were observed. Humoral immunity was induced but not correlated with protection. Moreover, S1-specific binding antibody titers against beta, omicron BA.1, and BA.2 variants showed 2.6-, 4.9- and 2.8- fold reduction, respectively, compared to the Wuhan strain. Discussion: Overall, the data suggested that adjuvants in subunit vaccines determine the protection profiles after SARS-CoV-2 infection and that nasal/oral mucosal immunization can protect against systemic COVID-19 disease.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Masculino , Cricetinae , Animais , Humanos , Feminino , SARS-CoV-2 , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Vacinas de Subunidades Antigênicas
12.
Cell Rep Med ; 4(4): 101018, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023746

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines demonstrate reduced protection against acquisition of BA.5 subvariant but are still effective against severe disease. However, immune correlates of protection against BA.5 remain unknown. We report the immunogenicity and protective efficacy of vaccine regimens consisting of the vector-based Ad26.COV2.S vaccine and the adjuvanted spike ferritin nanoparticle (SpFN) vaccine against a high-dose, mismatched Omicron BA.5 challenge in macaques. The SpFNx3 and Ad26 + SpFNx2 regimens elicit higher antibody responses than Ad26x3, whereas the Ad26 + SpFNx2 and Ad26x3 regimens induce higher CD8 T cell responses than SpFNx3. The Ad26 + SpFNx2 regimen elicits the highest CD4 T cell responses. All three regimens suppress peak and day 4 viral loads in the respiratory tract, which correlate with both humoral and cellular immune responses. This study demonstrates that both homologous and heterologous regimens involving Ad26.COV2.S and SpFN vaccines provide robust protection against a mismatched BA.5 challenge in macaques.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Animais , Macaca , Ad26COVS1 , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ferritinas
13.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36778223

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone and neurotransmitter secreted from intestinal L-cells in response to nutrients to stimulate insulin and block glucagon secretion in a glucose-dependent manner. GLP-1 in itself is rapidly degraded, but long-acting GLP-1 receptor agonists (GLP-1 RAs) have become central in the treatment of T2D because of the beneficial effects extending also beyond glucose control. Currently, these therapeutics must be injected either daily or weekly or taken daily orally, leaving room for technological innovations that enable less frequent administrations, which will reduce patient burden and increase patient compliance. An ideal GLP-1 RA drug product would provide continuous therapy for upwards of four months from a single administration to match the cadence with which T2D patients typically visit their physician. In this work, we leveraged an injectable hydrogel depot technology to develop a long-acting GLP-1 RA drug product. By modulating the hydrogel properties to tune GLP-1 RA retention within the hydrogel depot, we engineered formulations capable of months-long GLP-1 RA delivery. Using a rat model of T2D, we confirmed that a single injection of hydrogel-based therapies exhibits sustained exposure of GLP-1 RA over 42 days, corresponding to a once-every four month therapy in humans. Moreover, these hydrogel therapies maintained optimal management of blood glucose and weight comparable to daily injections of a leading GLP-1 RA drug molecule. The pharmacokinetics and pharmacodynamics of these hydrogel-based long-acting GLP-1 RA treatments are promising for development of novel therapies reducing treatment burden for more effective management of T2D. Progress and Potential: While insufficient access to quality healthcare is problematic for consistent management of Type II diabetes (T2D), poor adherence to burdensome treatment regimens is one of the greatest challenges for disease management. Glucagon-like peptide 1 (GLP1) drugs have become central to the treatment of T2D due to their many beneficial effects beyond improving glucose control. Unfortunately, while optimization of GLP1 drugs has reduced treatment frequency from daily to weekly, significant patient burden still leads to poor patience compliance. In this work we developed an injectable hydrogel technology to enable GLP1 drugs only requiring administration once every four months. We showed in a rat model of T2D that one injection of a hydrogel-based therapy improves management of blood glucose and weight when compared with daily injections of the leading drug used clinically. These hydrogel-based GLP1 treatments are promising for reducing treatment burden and more effectively managing T2D. Future Impact: A GLP-1-based drug product providing four months of continuous therapy per administration could be transformational for the management of Type II diabetes (T2D). One of the most challenging aspects of diabetes management with GLP-1 mimics is maintenance of consistent levels of the drugs in the body, which is complicated by poor patient compliance on account of the high frequency of dosing required for current treatments. By leveraging a unique sustained release hydrogel depot technology we develop a months-long GLP-1 drug product candidate that has the potential to reduce patient burden and improving diabetes management. Overall, the hydrogel technology we describe here can dramatically reduce the frequency of therapeutic interventions, significantly increasing patient quality of life and reducing complications of diabetes management.Our next steps will focus on optimization of the drug formulations in a swine model of T2D, which is the most advanced and translationally-relevant animal model for these types of therapeutics. The long-term vision for this work is to translate lead candidate drug products towards clinical evaluation, which will also require comprehensive safety evaluation in multiple species and manufacturing our these materials according to Good Manufacturing Practices. The months-long-acting GLP-1 drug product that will come from this work has the potential to afford thus far unrealized therapeutic impact for the hundreds of millions of people with diabetes worldwide.

14.
NPJ Vaccines ; 8(1): 23, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823160

RESUMO

Despite the availability of several effective SARS-CoV-2 vaccines, additional vaccines will be required for optimal global vaccination. In this study, we investigate the immunogenicity and protective efficacy of the GBP510 protein subunit vaccine adjuvanted with AS03, which has recently been authorized for marketing in South Korea under the trade name SKYCovioneTM. The antigen in GBP510/AS03 is a two-part recombinant nanoparticle, which displays 60 receptor binding domain (RBD) proteins of SARS-CoV-2 Spike on its surface. In this study we show that GBP510/AS03 induced robust immune responses in rhesus macaques and protected against a high-dose SARS-CoV-2 Delta challenge. We vaccinated macaques with two or three doses of GBP510/AS03 matched to the ancestral Wuhan strain of SARS-CoV-2 or with two doses of GBP510/AS03 matched to the ancestral strain and one dose matched to the Beta strain. Following the challenge with Delta, the vaccinated macaques rapidly controlled the virus in bronchoalveolar lavage and nasal swabs. Binding and neutralizing antibody responses prior to challenge correlated with protection against viral replication postchallenge. These data are consistent with data with this vaccine from the phase 3 clinical trial.

15.
Disabil Rehabil ; 45(7): 1220-1228, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35382658

RESUMO

PURPOSE: To estimate the prevalence of bilateral vestibulopathy (BV) and evaluate the association with, and concurrent validity of the Dynamic Gait Index (DGI) and the Dizziness Handicap Inventory (DHI) in diagnosing BV based on video head impulse test (vHIT) among older adults ≥65 years referred to a geriatric falls clinic on suspicion of vestibular impairment. MATERIALS AND METHODS: The vHIT was applied as a reference standard of BV to estimate diagnostic parameters for optimal cut-off scores of DGI and DHI applied separately and in combination. RESULTS: Two-hundred medical records were reviewed (70% women, mean age 79.4 years). The prevalence of BV was 9%. DGI was weakly associated with BV: Odds Ratio (OR) 1.15 (95% confidence interval (CI): 1.01; 1.31), with a 93% sensitivity and 47% specificity of a cut-off score of 16. The total score of DHI showed no association with BV: OR 1.01 (95% CI: 0.98; 1.04). The concurrent validity for BV and DGI and/or DHI were found to be inadequate. CONCLUSIONS: A prevalence of 9% underlines the relevance for assessment of BV. Only a weak association between DGI and/or DHI and BV was found. Thus, vHIT remains the preferred test for detecting BV in geriatric fall assessments.IMPLICATIONS FOR REHABILITATIONBilateral vestibulopathy (BV) has numerous negative consequences for older adults and the prevalence is high among older adults referred to a geriatric falls clinic on suspicion of vestibular impairment.The Dynamic Gait Index (DGI) and the Dizziness Handicap Inventory (DHI) are not valid alternatives to the Video Head Impulse Test (vHIT) when assessing BV among geriatric outpatients.


Assuntos
Vestibulopatia Bilateral , Doenças Vestibulares , Humanos , Feminino , Idoso , Masculino , Tontura/diagnóstico , Tontura/epidemiologia , Vestibulopatia Bilateral/complicações , Prevalência , Vertigem , Marcha , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/epidemiologia
16.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187726

RESUMO

Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.

17.
Sci Adv ; 8(47): eade4433, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417525

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.S (Ad26) and Spike ferritin Nanoparticle (SpFN), in nonhuman primates, delivered as either a homologous (SpFN/SpFN and Ad26/Ad26) or heterologous (Ad26/SpFN) prime-boost regimen. The Ad26/SpFN regimen elicited the highest CD4 T cell and memory B cell responses, the SpFN/SpFN regimen generated the highest binding and neutralizing antibody responses, and the Ad26/Ad26 regimen generated the most robust CD8 T cell responses. Despite these differences, protective efficacy against SARS-CoV-2 Omicron BA.1 challenge was similar for all three regimens. After challenge, all vaccinated monkeys showed significantly reduced peak and day 4 viral loads in both bronchoalveolar lavage and nasal swabs as compared with sham animals. The efficacy conferred by these three immunologically distinct vaccine regimens suggests that both humoral and cellular immunity contribute to protection against SARS-CoV-2 Omicron challenge.

18.
Nat Commun ; 13(1): 6309, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274085

RESUMO

Coronavirus vaccines that are highly effective against current and anticipated SARS-CoV-2 variants are needed to control COVID-19. We previously reported a receptor-binding domain (RBD)-sortase A-conjugated ferritin nanoparticle (scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected non-human primates (NHPs) from SARS-CoV-2 WA-1 infection. Here, we find the RBD-scNP induced neutralizing antibodies in NHPs against pseudoviruses of SARS-CoV and SARS-CoV-2 variants including 614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5, and a designed variant with escape mutations, PMS20. Adjuvant studies demonstrate variant neutralization titers are highest with 3M-052-aqueous formulation (AF). Immunization twice with RBD-scNPs protect NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protect mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect animals from multiple different SARS-related viruses. Such a vaccine could provide broad immunity to SARS-CoV-2 variants.


Assuntos
COVID-19 , Nanopartículas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Camundongos , Animais , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , COVID-19/prevenção & controle , Anticorpos Neutralizantes/química , Ferritinas
19.
Sci Immunol ; 7(77): eabq7647, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35943359

RESUMO

Spike-specific neutralizing antibodies (NAbs) are generally considered key correlates of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recently, robust vaccine prevention of severe disease with SARS-CoV-2 variants that largely escape NAb responses has been reported, suggesting a role for other immune parameters for virologic control. However, direct data demonstrating a role of CD8+ T cells in vaccine protection have not yet been reported. In this study, we show that vaccine-elicited CD8+ T cells contribute substantially to virologic control after SARS-CoV-2 challenge in rhesus macaques. We vaccinated 30 macaques with a single immunization of the adenovirus vector-based vaccine Ad26.COV2.S or sham and then challenged them with 5 × 105 median tissue culture infectious dose SARS-CoV-2 B.1.617.2 (Delta) by the intranasal and intratracheal routes. All vaccinated animals were infected by this high-dose challenge but showed rapid virologic control in nasal swabs and bronchoalveolar lavage by day 4 after challenge. However, administration of an anti-CD8α- or anti-CD8ß-depleting monoclonal antibody in vaccinated animals before SARS-CoV-2 challenge resulted in higher levels of peak and day 4 virus in both the upper and lower respiratory tracts. These data demonstrate that CD8+ T cells contribute substantially to vaccine protection against SARS-CoV-2 replication in macaques.


Assuntos
COVID-19 , Vacinas Virais , Animais , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Macaca mulatta , Ad26COVS1 , COVID-19/prevenção & controle
20.
bioRxiv ; 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35982683

RESUMO

Despite effective countermeasures, SARS-CoV-2 persists worldwide due to its ability to diversify and evade human immunity1. This evasion stems from amino-acid substitutions, particularly in the receptor-binding domain of the spike, that confer resistance to vaccines and antibodies 2-16. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different receptor binding domain (RBD) sites17,18 into multispecific antibodies. Here, we describe multispecific antibodies, including a trispecific that prevented virus escape >3000-fold more potently than the most effective clinical antibody or mixtures of the parental antibodies. Despite being generated before the evolution of Omicron, this trispecific antibody potently neutralized all previous variants of concern and major Omicron variants, including the most recent BA.4/BA.5 strains at nanomolar concentrations. Negative stain electron microscopy revealed that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated inter-spike binding. An optimized trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2 and BA.5, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. Such multispecific antibodies decrease the likelihood of SARS-CoV-2 escape, simplify treatment, and maximize coverage, providing a strategy for universal antibody therapies that could help eliminate pandemic spread for this and other pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA