Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38678008

RESUMO

The biological interactions between plants and their root microbiomes are essential for plant growth, and even though plant genotype (G), soil microbiome (M), and growth conditions (environment; E) are the core factors shaping root microbiome, their relationships remain unclear. In this study, we investigated the effects of G, M, and E and their interactions on the Lotus root microbiome and plant growth using an in vitro cross-inoculation approach, which reconstructed the interactions between nine Lotus accessions and four soil microbiomes under two different environmental conditions. Results suggested that a large proportion of the root microbiome composition is determined by M and E, while G-related (G, G × M, and G × E) effects were significant but small. In contrast, the interaction between G and M had a more pronounced effect on plant shoot growth than M alone. Our findings also indicated that most microbiome variations controlled by M have little effect on plant phenotypes, whereas G × M interactions have more significant effects. Plant genotype-dependent interactions with soil microbes warrant more attention to optimize crop yield and resilience.


Assuntos
Genótipo , Lotus , Microbiota , Raízes de Plantas , Microbiologia do Solo , Lotus/microbiologia , Lotus/crescimento & desenvolvimento , Lotus/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Microbiota/genética , Solo/química
2.
Plant Cell ; 36(6): 2289-2309, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38466226

RESUMO

Flowering plant genomes encode four or five DICER-LIKE (DCL) enzymes that produce small interfering RNAs (siRNAs) and microRNAs, which function in RNA interference (RNAi). Different RNAi pathways in plants effect transposon silencing, antiviral defense, and endogenous gene regulation. DCL2 acts genetically redundantly with DCL4 to confer basal antiviral defense. However, DCL2 may also counteract DCL4 since knockout of DCL4 causes growth defects that are suppressed by DCL2 inactivation. Current models maintain that RNAi via DCL2-dependent siRNAs is the biochemical basis of both effects. Here, we report that DCL2-mediated antiviral resistance and growth defects cannot be explained by the silencing effects of DCL2-dependent siRNAs. Both functions are defective in genetic backgrounds that maintain high levels of DCL2-dependent siRNAs, either with specific point mutations in DCL2 or with reduced DCL2 dosage because of heterozygosity for dcl2 knockout alleles. Intriguingly, all DCL2 functions require its catalytic activity, and the penetrance of DCL2-dependent growth phenotypes in dcl4 mutants correlates with DCL2 protein levels but not with levels of major DCL2-dependent siRNAs. We discuss this requirement and correlation with catalytic activity but not with resulting siRNAs, in light of other findings that reveal a DCL2 function in innate immunity activation triggered by cytoplasmic double-stranded RNA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Interferência de RNA , RNA Interferente Pequeno , Ribonuclease III , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Resistência à Doença/genética , Mutação
3.
Nat Commun ; 14(1): 7171, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935666

RESUMO

Legume-rhizobium signaling during establishment of symbiotic nitrogen fixation restricts rhizobium colonization to specific cells. A limited number of root hair cells allow infection threads to form, and only a fraction of the epidermal infection threads progress to cortical layers to establish functional nodules. Here we use single-cell analysis to define the epidermal and cortical cell populations that respond to and facilitate rhizobium infection. We then identify high-confidence nodulation gene candidates based on their specific expression in these populations, pinpointing genes stably associated with infection across genotypes and time points. We show that one of these, which we name SYMRKL1, encodes a protein with an ectodomain predicted to be nearly identical to that of SYMRK and is required for normal infection thread formation. Our work disentangles cellular processes and transcriptional modules that were previously confounded due to lack of cellular resolution, providing a more detailed understanding of symbiotic interactions.


Assuntos
Lotus , Rhizobium , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Simbiose/genética , Análise de Célula Única , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
4.
Theor Appl Genet ; 136(5): 114, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074596

RESUMO

KEY MESSAGE: We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.


Assuntos
Fabaceae , Vicia faba , Vicia faba/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Fabaceae/genética
5.
Plant Physiol ; 191(2): 1138-1152, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36448631

RESUMO

Many plant species have succeeded in colonizing a wide range of diverse climates through local adaptation, but the underlying molecular genetics remain obscure. We previously found that winter survival was a direct target of selection during colonization of Japan by the perennial legume Lotus japonicus and identified associated candidate genes. Here, we show that two of these, FERONIA-receptor like kinase (LjFER) and a S-receptor-like kinase gene (LjLecRK), are required for non-acclimated freezing tolerance and show haplotype-dependent cold-responsive expression. Our work suggests that recruiting a conserved growth regulator gene, FER, and a receptor-like kinase gene, LecRK, into the set of cold-responsive genes has contributed to freezing tolerance and local climate adaptation in L. japonicus, offering functional genetic insight into perennial herb evolution.


Assuntos
Lotus , Lotus/metabolismo , Haplótipos/genética , Congelamento , Aclimatação/genética , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas
6.
Plant J ; 111(5): 1397-1410, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792830

RESUMO

Transposable elements (TEs) constitute a large proportion of genomes of multicellular eukaryotes, including flowering plants. TEs are normally maintained in a silenced state and their transpositions rarely occur. Hybridization between distant species has been regarded as a 'shock' that stimulates genome reorganization, including TE mobilization. However, whether crosses between genetically close parents that result in viable and fertile offspring can induce TE transpositions has remained unclear. Here, we investigated the activation of long terminal repeat (LTR) retrotransposons in three Lotus japonicus recombinant inbred line (RIL) populations. We found that at least six LTR retrotransposon families were activated and transposed in 78% of the RILs investigated. LORE1a, one of the transposed LTR retrotransposons, showed transgenerational epigenetic activation, indicating the long-term effects of epigenetic instability induced by hybridization. Our study highlights TE activation as an unexpectedly common event in plant reproduction.


Assuntos
Lotus , Retroelementos , Evolução Molecular , Genoma de Planta/genética , Hibridização Genética , Lotus/genética , Plantas/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética
7.
Front Plant Sci ; 11: 1181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849731

RESUMO

Image-based phenotype data with high temporal resolution offers advantages over end-point measurements in plant quantitative genetics experiments, because growth dynamics can be assessed and analysed for genotype-phenotype association. Recently, network-based camera systems have been deployed as customizable, low-cost phenotyping solutions. Here, we implemented a large, automated image-capture system based on distributed computing using 180 networked Raspberry Pi units that could simultaneously monitor 1,800 white clover (Trifolium repens) plants. The camera system proved stable with an average uptime of 96% across all 180 cameras. For analysis of the captured images, we developed the Greenotyper image analysis pipeline. It detected the location of the plants with a bounding box accuracy of 97.98%, and the U-net-based plant segmentation had an intersection over union accuracy of 0.84 and a pixel accuracy of 0.95. We used Greenotyper to analyze a total of 355,027 images, which required 24-36 h. Automated phenotyping using a large number of static cameras and plants thus proved a cost-effective alternative to systems relying on conveyor belts or mobile cameras.

8.
DNA Res ; 27(3)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658273

RESUMO

Lotus japonicus is a herbaceous perennial legume that has been used extensively as a genetically tractable model system for deciphering the molecular genetics of symbiotic nitrogen fixation. Our aim is to improve the L. japonicus reference genome sequence, which has so far been based on Sanger and Illumina sequencing reads from the L. japonicus accession MG-20 and contained a large fraction of unanchored contigs. Here, we use long PacBio reads from L. japonicus Gifu combined with Hi-C data and new high-density genetic maps to generate a high-quality chromosome-scale reference genome assembly for L. japonicus. The assembly comprises 554 megabases of which 549 were assigned to six pseudomolecules that appear complete with telomeric repeats at their extremes and large centromeric regions with low gene density. The new L. japonicus Gifu reference genome and associated expression data represent valuable resources for legume functional and comparative genomics. Here, we provide a first example by showing that the symbiotic islands recently described in Medicago truncatula do not appear to be conserved in L. japonicus.


Assuntos
Cromossomos , Dosagem de Genes , Lotus/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Medicago/genética , Medicago truncatula/genética , Fixação de Nitrogênio
9.
Nat Commun ; 11(1): 253, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937774

RESUMO

Colonization of new habitats is expected to require genetic adaptations to overcome environmental challenges. Here, we use full genome re-sequencing and extensive common garden experiments to investigate demographic and selective processes associated with colonization of Japan by Lotus japonicus over the past ~20,000 years. Based on patterns of genomic variation, we infer the details of the colonization process where L. japonicus gradually spread from subtropical conditions to much colder climates in northern Japan. We identify genomic regions with extreme genetic differentiation between northern and southern subpopulations and perform population structure-corrected association mapping of phenotypic traits measured in a common garden. Comparing the results of these analyses, we find that signatures of extreme subpopulation differentiation overlap strongly with phenotype association signals for overwintering and flowering time traits. Our results provide evidence that these traits were direct targets of selection during colonization and point to associated candidate genes.


Assuntos
Aclimatação/genética , Lotus/genética , Evolução Biológica , Genes de Plantas/genética , Variação Genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genótipo , Geografia , Japão , Lotus/crescimento & desenvolvimento , Lotus/fisiologia , Fenótipo , Seleção Genética
10.
Plant Cell ; 31(7): 1466-1487, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023841

RESUMO

The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.


Assuntos
Genômica , Poliploidia , Trifolium/genética , Vias Biossintéticas/genética , Mapeamento Cromossômico , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Geografia , Hibridização Genética , Camada de Gelo , Fatores de Tempo
11.
Curr Protoc Plant Biol ; 3(2): e20070, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927119

RESUMO

A quarter of a century has passed since Lotus japonicus was proposed as a model legume because of its suitability for molecular genetic studies. Since then, a comprehensive set of genetic resources and tools has been developed, including recombinant inbred lines, a collection of wild accessions, published mutant lines, a large collection of mutant lines tagged with LORE1 insertions, cDNA clones with expressed sequence tag (EST) information, genomic clones with end-sequence information, and a reference genome sequence. Resource centers in Japan and Denmark ensure easy access to data and materials, and the resources have greatly facilitated L. japonicus research, thereby contributing to the molecular understanding of characteristic legume features such as endosymbiosis. Here, we provide detailed instructions for L. japonicus cultivation and describe how to order materials and access data using the resource center websites. The comprehensive overview presented here will make L. japonicus more easily accessible as a model system, especially for research groups new to L. japonicus research. © 2018 by John Wiley & Sons, Inc.


Assuntos
Lotus/crescimento & desenvolvimento , Banco de Sementes , Biblioteca Gênica , Genoma de Planta , Internet , Lotus/genética , Mutação , Sementes
13.
Plant Physiol ; 176(2): 1598-1609, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187571

RESUMO

Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape (Brassica napus) and the model plant Arabidopsis (Arabidopsis thaliana), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops.


Assuntos
Brassicaceae/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Brassicaceae/imunologia , Proteínas NLR/genética , Especificidade de Órgãos , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Brotos de Planta/genética , Brotos de Planta/imunologia
14.
DNA Res ; 23(5): 487-494, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374610

RESUMO

Recombinant inbred lines (RILs) derived from bi-parental populations are stable genetic resources, which are widely used for constructing genetic linkage maps. These genetic maps are essential for QTL mapping and can aid contig and scaffold anchoring in the final stages of genome assembly. In this study, two Lotus sp. RIL populations, Lotus japonicus MG-20 × Gifu and Gifu × L. burttii, were characterized by Illumina re-sequencing. Genotyping of 187 MG-20 × Gifu RILs at 87,140 marker positions and 96 Gifu × L. burttii RILs at 357,973 marker positions allowed us to accurately identify 1,929 recombination breakpoints in the MG-20 × Gifu RILs and 1,044 breakpoints in the Gifu × L. burttii population. The resulting high-density genetic maps now facilitate high-accuracy QTL mapping, identification of reference genome mis-assemblies, and characterization of structural variants.

15.
Nucleic Acids Res ; 43(22): 10975-88, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26464441

RESUMO

Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , MicroRNAs/metabolismo , RNA Helicases/fisiologia , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutação , RNA Helicases/genética , RNA Polimerase Dependente de RNA/genética
16.
Plant J ; 83(4): 719-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26119469

RESUMO

Legume-rhizobium symbiosis contributes large quantities of fixed nitrogen to both agricultural and natural ecosystems. This global impact and the selective interaction between rhizobia and legumes culminating in development of functional root nodules have prompted detailed studies of the underlying mechanisms. We performed a screen for aberrant nodulation phenotypes using the Lotus japonicus LORE1 insertion mutant collection. Here, we describe the identification of amsh1 mutants that only develop small nodule primordia and display stunted shoot growth, and show that the aberrant nodulation phenotype caused by LORE1 insertions in the Amsh1 gene may be separated from the shoot phenotype. In amsh1 mutants, rhizobia initially became entrapped in infection threads with thickened cells walls. Some rhizobia were released into plant cells much later than observed for the wild-type; however, no typical symbiosome structures were formed. Furthermore, cytokinin treatment only very weakly induced nodule organogenesis in amsh1 mutants, suggesting that AMSH1 function is required downstream of cytokinin signaling. Biochemical analysis showed that AMSH1 is an active deubiquitinating enzyme, and that AMSH1 specifically cleaves K63-linked ubiquitin chains. Post-translational ubiquitination and deubiquitination processes involving the AMSH1 deubiquitinating enzyme are thus involved in both infection and organogenesis in Lotus japonicus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Lotus/enzimologia , Lotus/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/patogenicidade , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Proteases Específicas de Ubiquitina/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Lotus/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/genética , Simbiose/fisiologia , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
17.
Gigascience ; 4: 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830017

RESUMO

BACKGROUND: Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. RESULTS: Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. CONCLUSIONS: We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.


Assuntos
Processamento Alternativo , Vias Biossintéticas/genética , Mirtilos Azuis (Planta)/genética , Genoma de Planta , Antocianinas/biossíntese , Sequência de Bases , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Mirtilos Azuis (Planta)/metabolismo , Bases de Dados Genéticas , Etilenos/biossíntese , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Anotação de Sequência Molecular , RNA de Plantas/química , Alinhamento de Sequência , Análise de Sequência de RNA
18.
PLoS One ; 9(4): e94000, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718292

RESUMO

Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.


Assuntos
Genes de Plantas , Triticum/genética , Agricultura/métodos , Alelos , Cruzamento , Cromossomos de Plantas/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Europa (Continente) , Marcadores Genéticos , Variação Genética , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites , Poliploidia , Seleção Genética , Triticum/classificação
19.
Plant J ; 78(5): 811-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24661810

RESUMO

A symbiotic mutant of Lotus japonicus, called sunergos1-1 (suner1-1), originated from a har1-1 suppressor screen. suner1-1 supports epidermal infection by Mesorhizobium loti and initiates cell divisions for organogenesis of nodule primordia. However, these processes appear to be temporarily stalled early during symbiotic interaction, leading to a low nodule number phenotype. This defect is ephemeral and near wild-type nodule numbers are reached by suner1-1 at a later point after infection. Using an approach that combined map-based cloning and next-generation sequencing we have identified the causative mutation and show that the suner1-1 phenotype is determined by a weak recessive allele, with the corresponding wild-type SUNER1 locus encoding a predicted subunit A of a DNA topoisomerase VI. Our data suggest that at least one function of SUNER1 during symbiosis is to participate in endoreduplication, which is an essential step during normal differentiation of functional, nitrogen-fixing nodules.


Assuntos
Proteínas Arqueais/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Lotus/enzimologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia , Proteínas Arqueais/genética , DNA Topoisomerases Tipo II/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Nódulos Radiculares de Plantas/genética , Simbiose/genética
20.
Autophagy ; 10(3): 520-1, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412967

RESUMO

Autophagy contributes to the removal of harmful cellular refuse, whereas catalase plays an important protective role by detoxifying reactive oxygen species. We recently found that autophagy and catalase are also required for promoting programmed cell death induced during plant immune responses. Here we discuss the difficulties in identifying cell death effectors, which are also required to maintain cellular homeostasis, and how their prodeath roles were unmasked using an unbiased forward genetics approach.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Catalase/metabolismo , Transdução de Sinais/fisiologia , Plantas/enzimologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA