Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 109(5-1): 054610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907434

RESUMO

We investigate experimentally the collective motion of polar vibrated disks in an annular geometry, varying both the packing fraction and the amplitude of the angular noise. For low enough noise and large enough density, an overall collective motion takes place along the tangential direction. The spatial organization of the flow reveals the presence of polar bands of large density, as expected from the commonly accepted picture of the transition to collective motion in systems of aligning polar active particles. However, in our case, the low density phase is also polar, consistent with what is observed when jamming takes place in a very high density flock. Interestingly, while in that case the particles in the high density bands are arrested, resulting in an upstream propagation at a constant speed, in our case the bands travel downstream with a density-dependent speed. We demonstrate from local measurements of the packing fraction, alignment, and flow speeds that the bands observed here result both from a polar ordering process and a motility induced phase separation mechanism.

2.
Phys Rev E ; 106(1): L012604, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974623

RESUMO

We study fire-ant columns, an active version of passive granular columns, and find that, despite the inherent activity of the ants and their natural tendency to rearrange, the ants develop force-chain structures that help support the weight of the column. Hence, the apparent mass at the bottom of the column saturates with added mass in a Janssen-like fashion, reminiscent of what is seen in passive-grain columns in wide containers. Activity-induced rearrangements within the column, however, lead to changes in the force-chain structure that slightly reduce the supportive nature of the force-chains over time and to fluctuations in the pressure at the bottom of the column that scale like the law of large numbers. We capture the experimental results in simulations that include not only friction with the walls, but also a fluctuating force that introduces activity and that effectively affects the force-chain structure of the ant collective.

3.
Phys Rev E ; 106(6-1): 064606, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671158

RESUMO

The configurations taken by polymers embedded in out-of-equilibrium baths may have broad implications in a variety of biological systems. As such, they have attracted considerable interest, particularly in simulation studies. Here we analyze the distribution of configurations taken by a passive flexible chain in a bath of hard, self-propelled, vibrated disks and systematically compare it to that of the same flexible chain in a bath of hard, thermal-like, vibrated disks. We demonstrate experimentally that the mean length and mean radius of gyration of both chains agree with Flory's law. However, the Kuhn length associated with the number of correlated monomers is smaller in the case of the active bath, corresponding to a higher effective temperature. Importantly, the active bath does not just simply map on a hot equilibrium bath. Close examination of the chains' configurations indicates a marked bias, with the chain in the active bath more likely assuming configurations with a single prominent bend.


Assuntos
Polímeros , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA