Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663994

RESUMO

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

2.
J Neurol Neurosurg Psychiatry ; 95(4): 384-390, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967935

RESUMO

Understanding the causes of Alzheimer's disease and related dementias remains a challenge. Observational studies investigating dementia risk factors are limited by the pervasive issues of confounding, reverse causation and selection biases. Conducting randomised controlled trials for dementia prevention is often impractical due to the long prodromal phase and the inability to randomise many potential risk factors. In this essay, we introduce Mendelian randomisation as an alternative approach to examine factors that may prevent or delay Alzheimer's disease. Mendelian randomisation is a causal inference method that has successfully identified risk factors and treatments in various other fields. However, applying this method to dementia risk factors has yielded unexpected findings. Here, we consider five potential explanations and provide recommendations to enhance causal inference from Mendelian randomisation studies on dementia. By employing these strategies, we can better understand factors affecting dementia risk.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Análise da Randomização Mendeliana/métodos , Fatores de Risco , Causalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA