Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PLoS One ; 19(2): e0281408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315706

RESUMO

Since 1997 Tanzania has undertaken a process to identify and declare a network of Nature Forest Reserves (NFRs) with high biodiversity values, from within its existing portfolio of national Forest Reserves, with 16 new NFRs declared since 2015. The current network of 22 gazetted NFRs covered 948,871 hectares in 2023. NFRs now cover a range of Tanzanian habitat types, including all main forest types-wet, seasonal, and dry-as well as wetlands and grasslands. NFRs contain at least 178 of Tanzania's 242 endemic vertebrate species, of which at least 50% are threatened with extinction, and 553 Tanzanian endemic plant taxa (species, subspecies, and varieties), of which at least 50% are threatened. NFRs also support 41 single-site endemic vertebrate species and 76 single-site endemic plant taxa. Time series analysis of management effectiveness tracking tool (METT) data shows that NFR management effectiveness is increasing, especially where donor funds have been available. Improved management and investment have resulted in measurable reductions of some critical threats in NFRs. Still, ongoing challenges remain to fully contain issues of illegal logging, charcoal production, firewood, pole-cutting, illegal hunting and snaring of birds and mammals, fire, wildlife trade, and the unpredictable impacts of climate change. Increased tourism, diversified revenue generation and investment schemes, involving communities in management, and stepping up control measures for remaining threats are all required to create a network of economically self-sustaining NFRs able to conserve critical biodiversity values.


Assuntos
Conservação dos Recursos Naturais , Florestas , Animais , Tanzânia , Conservação dos Recursos Naturais/métodos , Ecossistema , Biodiversidade , Mamíferos
2.
Brain Behav Immun Health ; 35: 100700, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38107021

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a complex behavioral disorder characterized by hyperactivity, impulsivity, inattention, and deficits in working memory and time perception. While animal models have advanced our neurobiological understanding of this condition, there are limited and inconsistent data on working and elapsed time memory function. Inflammatory signaling has been identified as a key factor in memory and cognitive impairments, but its role in ADHD remains unclear. Additionally, the disproportionate investigation of male subjects in ADHD research has contributed to a poor understanding of the disorder in females. This study sought to investigate the potential connections between memory, neuroimmunology, and ADHD in both male and female animals. Specifically, we utilized the spontaneously hypertensive rat (SHR), one of the most extensively studied animal models of ADHD. Compared to their control, the Wistar-Kyoto (WKY) rat, male SHR are reported to exhibit several behavioral phenotypes associated with ADHD, including hyperactivity, impulsivity, and poor sustained attention, along with impairments in learning and memory. As the hippocampus is a key brain region for learning and memory, we examined the behavior of male and female SHR and WKY rats in two hippocampal-dependent memory tasks. Our findings revealed that SHR have delay-dependent working memory deficits that were similar to, albeit less severe than, those seen in hippocampal-lesioned rats. We also observed impairments in elapsed time processing in female SHR, particularly in the discrimination of longer time durations. To investigate the impact of inflammatory signaling on memory in these rats, we analyzed the levels of several cytokines in the dorsal and ventral hippocampus of SHR and WKY. Although we found some sex and genotype differences, concentrations were generally similar between groups. Taken together, our results indicate that SHR exhibit deficits in spatial working memory and memory for elapsed time, as well as some differences in hippocampal cytokine concentrations. These findings contribute to a better understanding of the neurobiological basis of ADHD in both sexes and may inform future research aimed at developing effective treatments for the disorder. Nonetheless, the potential mediating role of neuroinflammation in the memory symptomatology of SHR requires further investigation.

3.
Dev Sci ; 26(1): e13249, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35175668

RESUMO

The drive to move to music is evident across a variety of contexts, from the simple urge to tap our toe to a song on the radio, to massive crowds dancing in time at a rock concert. Though seemingly effortless, beat synchronization is difficult to master and children are often poor beat synchronizers. Nevertheless, auditory-motor integration is fundamental for many daily processes, such as speech. A topic that has been relatively understudied concerns how stimulus properties affect young children's movement in responses to auditory stimuli. In the present study, we examined how musical groove (adult-rated desire to move) affected 3.0- to 6.9-year-old children's free dancing in the comfort of their home (n = 78). In the high groove conditions, children danced more and with more energy compared to the low groove conditions. Moreover, in the high groove condition, children's movement tempos corresponded better with the tempos of the music. Results point to early childhood sensitivity to the musical features that motivate adults to move to music. High groove music may therefore prove especially effective at facilitating early auditory-motor integration. A video abstract of this article can be viewed at https://youtu.be/vli0-6N12Ts.


Assuntos
Percepção Auditiva , Música , Adulto , Criança , Humanos , Pré-Escolar , Percepção Auditiva/fisiologia , Movimento/fisiologia , Fala
4.
Heredity (Edinb) ; 129(4): 225-232, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764697

RESUMO

Mitochondria are organelles that produce cellular energy in the form of ATP through oxidative phosphorylation, and this primary function is conserved among many taxa. Locomotion is a trait that is highly reliant on metabolic function and expected to be greatly affected by disruptions to mitochondrial performance. To this end, we aimed to examine how activity and sleep vary between Drosophila melanogaster strains with different geographic origins, how these patterns are affected by mitochondrial DNA (mtDNA) variation, and how breaking up co-evolved mito-nuclear gene combinations affect the studied activity traits. Our results demonstrate that Drosophila strains from different locations differ in sleep and activity, and that females are generally more active than males. By comparing activity and sleep of mtDNA variants introgressed onto a common nuclear background in cytoplasmic hybrid (cybrid) strains, we were able to quantify the among-line variance attributable to mitochondrial DNA, and we establish that mtDNA variation affects both activity and sleep, in a sex-specific manner. Altogether our study highlights the important role that mitochondrial genome variation plays on organismal physiology and behaviour.


Assuntos
DNA Mitocondrial , Drosophila melanogaster , Trifosfato de Adenosina/metabolismo , Animais , DNA Mitocondrial/genética , Drosophila/genética , Drosophila melanogaster/genética , Feminino , Locomoção/genética , Masculino , Mitocôndrias/genética , Sono/genética
5.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132964

RESUMO

Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.


Assuntos
Cegueira/congênito , Gerenciamento Clínico , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Previsões , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Degeneração Retiniana/fisiopatologia , Espasmos Infantis/fisiopatologia , Adolescente , Adulto , Animais , Cegueira/complicações , Cegueira/fisiopatologia , Cegueira/terapia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Seguimentos , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/terapia , Degeneração Retiniana/complicações , Degeneração Retiniana/terapia , Espasmos Infantis/complicações , Espasmos Infantis/terapia , Adulto Jovem
6.
Neurobiol Learn Mem ; 185: 107507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34474155

RESUMO

Our memory for time is a fundamental ability that we use to judge the duration of events, put our experiences into a temporal context, and decide when to initiate actions. The medial entorhinal cortex (MEC), with its direct projections to the hippocampus, has been proposed to be the key source of temporal information for hippocampal time cells. However, the behavioral relevance of such temporal firing patterns remains unclear, as most of the paradigms used for the study of temporal processing and time cells are either spatial tasks or tasks for which MEC function is not required. In this study, we asked whether the MEC is necessary for rats to perform a time duration discrimination task (TDD), in which rats were trained to discriminate between 10-s and 20-s delay intervals. After reaching a 90% performance criterion, the rats were assigned to receive an excitotoxic MEC-lesion or sham-lesion surgery. We found that after recovering from surgery, rats with MEC lesions were impaired on the TDD task in comparison to rats with sham lesions, failing to return to criterion performance. Their impairment, however, was specific to the longer, 20-s delay trials. These results indicate that time processing is dependent on MEC neural computations only for delays that exceed 10 s, perhaps because long-term memory resources are needed to keep track of longer time intervals.


Assuntos
Córtex Entorrinal/fisiologia , Memória Episódica , Percepção do Tempo/fisiologia , Animais , Condicionamento Operante/fisiologia , Aprendizagem por Discriminação , Córtex Entorrinal/lesões , Masculino , Transtornos da Memória/fisiopatologia , Ratos , Ratos Long-Evans
7.
J Invertebr Pathol ; 184: 107595, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33878331

RESUMO

Invasive crayfish and the introduction of non-native diseases pose a significant risk for the conservation of endangered, white-clawed crayfish (Austropotamobius pallipes). Continued pollution of waterways is also of concern for native species and may be linked with crayfish disease dynamics. We explore whether crayfish species or environmental quality are predictors of infection presence and prevalence in native A. pallipes and invasive signal crayfish (Pacifastacus leniusculus). We use a seven-year dataset of histology records, and a field survey comparing the presence and prevalence of infectious agents in three isolated A. pallipes populations; three isolated P. leniusculus populations, and three populations where the two species had overlapped in the past. We note a lower diversity of parasites (Simpson's Index) in P. leniusculus ('Pacifastacus leniusculus Bacilliform Virus' - PlBV) (n = 1 parasite) relative to native A. pallipes (n = 4 parasites), which host Thelohania contejeani, 'Austropotamobius pallipes bacilliform virus' (ApBV), Psorospermium haeckeli and Branchiobdella astaci, at the sites studied. The infectious group present in both species was an intranuclear bacilliform virus of the hepatopancreas. The prevalence of A. astaci in A. pallipes populations was higher in more polluted water bodies, which may reflect an effect of water quality, or may be due to increased chance of transmission from nearby P. leniusculus, a species commonly found in poor quality habitats.


Assuntos
Astacoidea/microbiologia , Astacoidea/parasitologia , Espécies Introduzidas , Animais , Astacoidea/virologia , Reino Unido
8.
PLoS One ; 15(8): e0236410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797095

RESUMO

The use and management of single use plastics is a major area of concern for the public, regulatory and business worlds. Focusing on the most commonly occurring consumer plastic items present in European freshwater environments, we identified and evaluated consumer-based actions with respect to their direct or indirect potential to reduce macroplastic pollution in freshwater environments. As the main end users of these items, concerned consumers are faced with a bewildering array of choices to reduce their plastics footprint, notably through recycling or using reusable items. Using a Multi-Criteria Decision Analysis approach, we explored the effectiveness of 27 plastic reduction actions with respect to their feasibility, economic impacts, environmental impacts, unintended social/environmental impacts, potential scale of change and evidence of impact. The top ranked consumer-based actions were identified as: using wooden or reusable cutlery; switching to reusable water bottles; using wooden or reusable stirrers; using plastic free cotton-buds; and using refill detergent/ shampoo bottles. We examined the feasibility of top-ranked actions using a SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) to explore the complexities inherent in their implementation for consumers, businesses, and government to reduce the presence of plastic in the environment.


Assuntos
Monitoramento Ambiental , Plásticos/toxicidade , Rios/química , Poluentes Químicos da Água/toxicidade , Comportamento do Consumidor , Técnicas de Apoio para a Decisão , Poluição Ambiental , Humanos , Plásticos/química , Reciclagem , Resíduos/análise , Poluentes Químicos da Água/química
9.
J Neurosci Res ; 98(9): 1780-1799, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31562661

RESUMO

The ability to perceive and interpret environmental sound accurately is conserved across many species and is fundamental for understanding communication via vocalizations. Auditory acuity and temporally controlled neuronal firing underpin this ability. Deterioration in neuronal firing precision likely contributes to poorer hearing performance, yet the role of neural processing by key nuclei in the central auditory pathways is not fully understood. Here, we record from the auditory thalamus (medial geniculate body [MGB]) of young and middle-aged, normally hearing male CBA/Ca mice. We report changes in temporal processing of auditory stimuli, with neurons recorded from ventral and medial MGB subdivisions of older animals more likely to synchronize to rapid temporally varying stimuli. MGB subdivisions also showed increased probability of neuronal firing and shorter response latencies to clicks in older animals. Histological investigation of neuronal extracellular specializations, perineuronal nets (PNNs) and axonal coats, in the MGB identified greater organization of PNNs around MGB neurons and the presence of axonal coats within older animals. This supports the observation that neural responses recorded from ventral and medial MGB of older mice were more likely to synchronize to temporally varying stimuli presented at faster repetition rates than those recorded from young adult animals. These changes are observed in animals with normal hearing thresholds, confirming that neural processing differs between the MGB subdivisions and such processing is associated with age-related changes to PNNs. Understanding these age-related changes and how they occur have important implications for the design of effective therapeutic interventions to improve speech intelligibility into later life.


Assuntos
Envelhecimento/fisiologia , Percepção Auditiva/fisiologia , Corpos Geniculados/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Corpos Geniculados/anatomia & histologia , Audição/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Neurônios/fisiologia , Percepção do Tempo/fisiologia
10.
Sci Total Environ ; 704: 135242, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812404

RESUMO

Understanding and managing plastic pollution is an increasingly important environmental priority for policy makers, businesses and scientists. Awareness of the potential damage to the world's oceans has grown but there is less attention given to freshwater ecosystems. Yet, rivers are the dominant source of plastic pollution to the marine environment, as well as a potential sink, accumulating plastic from multiple sources. Actions to reduce the presence of macroplastics in rivers is fundamental to conserving both freshwater and marine environments, but there is limited understanding of potential pollution sources, vectors and storage. Importantly, there are only a handful of studies examining the typologies of freshwater macroplastic pollution, often using different categories and collection methods. This impedes setting priorities for scientific investigation and mitigation measures. The present study identifies the most prevalent macroplastic items in freshwater environments in Europe, with a focus on consumer plastic items, i.e. those that could potentially be reduced by targeted actions by the public, as well as industrial and government intervention. Our analysis addresses the differences between reported macroplastics in freshwater and marine environments as well as those estimated from litter rates. Our results identify a macroplastic "top ten", i.e. those dominant plastic typologies that require a more focused effort to reformulate their use and management, as well as setting a common baseline for a more consistent data gathering and reporting approach.

11.
Br Paramed J ; 3(4): 43, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328818

RESUMO

AIMS: More paramedics than ever are taking time off or leaving the ambulance service through stress; career decisions could be greatly influenced by the perceived impact of shift work on families. Through three key themes of physical injury, emotional labour and work-family fit, this review explores how paramedic shift work impacts the family system and how this could influence retention and recruitment of staff. METHODS: A systematic literature search was conducted using key terms and Boolean operators, and strict inclusion and exclusion criteria. Twenty-two papers were deemed to be relevant. These were critiqued using a framework addressing both quantitative and qualitative research for the novice researcher in healthcare. In turn each theme was reviewed and discussed. RESULTS: Due to the variety of roles required of a paramedic combined with the unpredictable environments in which they work, paramedics are at high risk of sustaining a work-related injury. Families raise concerns about paramedics' safety at work, and the financial and psychological implications of sustaining an injury concern paramedics themselves. Additionally, links have been found between paramedic shift length and risk of occupational injury.Paramedics rely heavily on families for emotional support owing to the nature of incidents attended at work. The male coping culture ingrained into paramedic practice deters this at work. As family members are often uneducated in emotional processing techniques, this puts them at risk of vicarious trauma. Additionally, techniques employed by paramedics to cope with emotional distress are carried into the home environment to its detriment.Several shift characteristics (length, pattern, weekend work, high weekly work hours, inflexible schedules and low job satisfaction) contribute to work-family conflict, relationship problems, child rearing conflict and difficulties in maintaining a social life. CONCLUSION: Changes are required in the organisational culture, from one which denigrates staff for reporting injuries, for showing emotions and for struggling to balance their home life with work, to one which improves paramedics' experience at work and therefore their home life too. Investment in education programmes for families on how to enable emotional processing and the risks this carries will improve the picture for families. Flexible work arrangement is an area of organisational reform that could greatly improve job satisfaction, staff retention and recruitment, and ultimately improve family life.Further research into the areas of paramedic shift work that impact the home system, especially in the UK, is needed to better understand some of the issues with staff retention and recruitment.

12.
Biol Open ; 8(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30504133

RESUMO

The prevalence and importance of hearing damage caused by noise levels not previously thought to cause permanent hearing impairment has become apparent in recent years. The damage to, and loss of, afferent terminals of auditory nerve fibres at the cochlear inner hair cell has been well established, but the effects of noise exposure and terminal loss on the inner hair cell are less known. Using three-dimensional structural studies in mice we have examined the consequences of afferent terminal damage on inner hair cell morphology and intracellular structure. We identified a structural phenotype in the pre-synaptic regions of these damaged hair cells that persists for four weeks after noise exposure, and demonstrates a specific dysregulation of the synaptic vesicle recycling pathway. We show evidence of a failure in regeneration of vesicles from small membrane cisterns in damaged terminals, resulting from a failure of separation of small vesicle buds from the larger cisternal membranes.

13.
Nat Commun ; 9(1): 4298, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327471

RESUMO

Exposure to even a single episode of loud noise can damage synapses between cochlear hair cells and auditory nerve fibres, causing hidden hearing loss (HHL) that is not detected by audiometry. Here we investigate the effects of noise-induced HHL on functional hearing by measuring the ability of neurons in the auditory midbrain of mice to adapt to sound environments containing quiet and loud periods. Neurons from noise-exposed mice show less capacity for adaptation to loud environments, convey less information about sound intensity in those environments, and adaptation to the longer-term statistical structure of fluctuating sound environments is impaired. Adaptation comprises a cascade of both threshold and gain adaptation. Although noise exposure only impairs threshold adaptation directly, the preserved function of gain adaptation surprisingly aggravates coding deficits for loud environments. These deficits might help to understand why many individuals with seemingly normal hearing struggle to follow a conversation in background noise.


Assuntos
Adaptação Fisiológica/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Estimulação Acústica , Animais , Limiar Auditivo , Nervo Coclear/fisiologia , Colículos Inferiores/fisiologia , Masculino , Mesencéfalo/fisiologia , Camundongos Endogâmicos CBA , Ruído/efeitos adversos
14.
Hear Res ; 365: 77-89, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29773471

RESUMO

Noise exposure has been shown to produce long-lasting increases in spontaneous activity in central auditory structures in animal models, and similar pathologies are thought to contribute to clinical phenomena such as hyperacusis or tinnitus in humans. Here we demonstrate that multi-unit spontaneous neuronal activity in the inferior colliculus (IC) of mice is significantly elevated four weeks following noise exposure at recording sites with frequency tuning within or near the noise exposure band, and this selective central auditory pathology can be normalised through administration of a novel compound that modulates activity of Kv3 voltage-gated ion channels. The compound had no statistically significant effect on IC spontaneous activity without noise exposure, nor on thresholds or frequency tuning of tone-evoked responses either with or without noise exposure. Administration of the compound produced some reduction in the magnitude of evoked responses to a broadband noise, but unlike effects on spontaneous rates, these effects on evoked responses were not specific to recording sites with frequency tuning within the noise exposure band. Thus, the results suggest that modulators of Kv3 channels can selectively counteract increases in spontaneous activity in the auditory midbrain associated with noise exposure.


Assuntos
Estimulação Acústica/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Imidazóis/farmacologia , Colículos Inferiores/efeitos dos fármacos , Pirimidinas/farmacologia , Canais de Potássio Shaw/efeitos dos fármacos , Animais , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/metabolismo , Limiar Auditivo/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Imidazóis/farmacocinética , Colículos Inferiores/metabolismo , Masculino , Camundongos Endogâmicos CBA , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pirimidinas/farmacocinética , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Front Neurol ; 7: 133, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625631

RESUMO

The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to "hidden hearing loss" (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur without obvious hearing loss and conversely why hearing loss does not always lead to tinnitus.

16.
J Neurosci ; 36(6): 1977-95, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865621

RESUMO

High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for "sluggish" auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT: The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone.


Assuntos
Percepção Auditiva/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica , Adaptação Psicológica , Algoritmos , Animais , Percepção Auditiva/genética , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Corpos Geniculados/fisiologia , Audição/fisiologia , Masculino , Camundongos , Modelos Neurológicos , Mutação/genética , Ruído , Tálamo/fisiologia
17.
Ann Bot ; 117(2): 341-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26658101

RESUMO

BACKGROUND AND AIMS: Most pollinators are generalists and therefore are likely to transfer heterospecific pollen among co-flowering plants. Most work on the impacts of heterospecific pollen deposition on plant fecundity has utilized hand-pollination experiments in greenhouse settings, and we continue to know very little about the reproductive effects of heterospecific pollen in field settings. METHODS: We explored how patterns of naturally deposited heterospecific pollen relate to the reproductive output of Delphinium barbeyi, a common subalpine perennial herb in the Rocky Mountains (USA). We assessed a wide range of naturally occurring heterospecific pollen proportions and pollen load sizes, and linked stigmatic pollen deposition directly to seed set in individual carpels in the field. KEY RESULTS: We found that heterospecific pollen deposition in D. barbeyi is common, but typically found at low levels across stigmas collected in our sites. Neither conspecific nor heterospecific pollen deposition was related to carpel abortion. By contrast, we saw a significant positive relationship between conspecific pollen amount and viable seed production, as well as a significant negative interaction between the effects of conspecific pollen and heterospecific pollen amount, whereby the effect of conspecific pollen on viable seed production became weaker with greater heterospecific deposition on stigmas. CONCLUSIONS: To our knowledge, this is the first demonstration of a relationship between heterospecific pollen and seed production in a field setting. In addition, it is the first report of an interaction between conspecific and heterospecific pollen quantities on seed production. These findings, taken with the results from other studies, suggest that greenhouse hand-pollination studies and field studies should be more tightly integrated in future work to better understand how heterospecific pollen transfer can be detrimental for plant reproduction.


Assuntos
Delphinium/fisiologia , Pólen/fisiologia , Colorado , Flores/fisiologia , Polinização , Reprodução/fisiologia , Sementes/fisiologia
18.
PLoS One ; 10(10): e0140833, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485300

RESUMO

Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species-particularly in freshwater and marine environments-is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Espécies Introduzidas , Recreação , Viagem , Animais , Humanos , Movimento
19.
Biol Invasions ; 17(8): 2287-2297, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26316842

RESUMO

Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government's Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could 'clean' their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ2 = 117.24, p < 0.001; 1 day χ2 = 95.68, p < 0.001; 8 days χ2 = 12.16, p < 0.001 and 16 days χ2 = 7.58, p < 0.001). Drying caused significantly higher mortality than the control (no action) from day 4 (χ2 = 8.49, p < 0.01) onwards. In the absence of hot water or drying, 6/7 of these species survived for 16 days, highlighting the importance of good biosecurity practice to reduce the risk of accidental spread. In an additional experiment the minimum lethal temperature and exposure time in hot water to cause 100 % mortality in American signal crayfish (Pacifastacus leniusculus), was determined to be 5 min at 40 °C. Hot water provides a simple, rapid and effective method to clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns.

20.
Front Syst Neurosci ; 9: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25805974

RESUMO

To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should "trigger" the network's response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA