RESUMO
Neuroblastoma (NB) is one of the most lethal childhood cancers due to its propensity to become treatment resistant. By spatial mapping of subclone geographies before and after chemotherapy across 89 tumor regions from 12 NBs, we find that densely packed territories of closely related subclones present at diagnosis are replaced under effective treatment by islands of distantly related survivor subclones, originating from a different most recent ancestor compared to lineages dominating before treatment. Conversely, in tumors that progressed under treatment, ancestors of subclones dominating later in disease are present already at diagnosis. Chemotherapy treated xenografts and cell culture models replicate these two contrasting scenarios and show branching evolution to be a constant feature of proliferating NB cells. Phylogenies based on whole genome sequencing of 505 individual NB cells indicate that a rich repertoire of parallel subclones emerges already with the first oncogenic mutations and lays the foundation for clonal replacement under treatment.
Assuntos
Evolução Clonal , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Humanos , Animais , Camundongos , Filogenia , Mutação , Linhagem Celular Tumoral , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto , Células Clonais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , FemininoRESUMO
PURPOSE: While patients with intermediate-risk (IR) Wilms tumors now have an overall survival (OS) rate of almost 90%, those affected by high-stage tumors with diffuse anaplasia have an OS of only around 50%. We here identify key events in the pathogenesis of diffuse anaplasia by mapping cancer cell evolution over anatomic space in Wilms tumors. EXPERIMENTAL DESIGN: We spatially mapped subclonal landscapes in a retrospective cohort of 20 Wilms tumors using high-resolution copy-number profiling and TP53 mutation analysis followed by clonal deconvolution and phylogenetic reconstruction. Tumor whole-mount sections (WMS) were utilized to characterize the distribution of subclones across anatomically distinct tumor compartments. RESULTS: Compared with non-diffuse anaplasia Wilms tumors, tumors with diffuse anaplasia showed a significantly higher number of genetically distinct tumor cell subpopulations and more complex phylogenetic trees, including high levels of phylogenetic species richness, divergence, and irregularity. All regions with classical anaplasia showed TP53 alterations. TP53 mutations were frequently followed by saltatory evolution and parallel loss of the remaining wild-type (WT) allele in different regions. Morphologic features of anaplasia increased with copy-number aberration (CNA) burden and regressive features. Compartments demarcated by fibrous septae or necrosis/regression were frequently (73%) associated with the emergence of new clonal CNAs, although clonal sweeps were rare within these compartments. CONCLUSIONS: Wilms tumors with diffuse anaplasia display significantly more complex phylogenies compared with non-diffuse anaplasia Wilms tumors, including features of saltatory and parallel evolution. The subclonal landscape of individual tumors was constrained by anatomic compartments, which should be considered when sampling tissue for precision diagnostics.
Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Neoplasias Renais/patologia , Anaplasia/genética , Estudos Retrospectivos , Filogenia , Tumor de Wilms/genética , Tumor de Wilms/patologiaRESUMO
Chromosomal instability is a common feature in malignant tumors. Previous studies have indicated that inactivation of the classical tumor suppressor genes RB1, CDKN2A, and TP53 may contribute to chromosomal aberrations in cancer by disrupting different aspects of the cell cycle and DNA damage checkpoint machinery. We performed a side-by-side comparison of how inactivation of each of these genes affected chromosomal stability in vitro. Using CRISPR-Cas9 technology, RB1, CDKN2A, and TP53 were independently knocked out in karyotypically normal immortalized cells, after which these cells were followed over time. Bulk RNA sequencing revealed a distinct phenotype with upregulation of pathways related to cell cycle control and proliferation in all three knockouts. Surprisingly, the RB1 and CDKN2A knocked out cell lines did not harbor more copy number aberrations than wild-type cells, despite culturing for months. The TP53-knocked out cells, in contrast, showed a massive amount of copy number alterations and saltatory evolution through whole genome duplication. This side-by-side comparison indicated that the effects on chromosomal stability from inactivation of RB1 and CDKN2A are negligible compared to inactivation of TP53, under the same conditions in a nonstressful environment, even though partly overlapping regulatory pathways are affected. Our data suggest that loss of RB1 and CDKN2A alone is not enough to trigger surviving detectable aneuploid clones while inactivation of TP53 on its own caused massive CIN leading to saltatory clonal evolution in vitro and clonal selection.
Assuntos
Instabilidade Cromossômica , Proteína Supressora de Tumor p53 , Humanos , Instabilidade Cromossômica/genética , Proteína Supressora de Tumor p53/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ubiquitina-Proteína Ligases , Proteínas de Ligação a Retinoblastoma/genéticaRESUMO
Structural changes and neuropathology in the hypothalamus have been suggested to contribute to the non-motor manifestations of Huntington's disease (HD), a neurodegenerative disorder caused by an expanded cytosine-adenine-guanine (CAG) repeat in the huntingtin (HTT) gene. In this study, we investigated whether hypothalamic HTT expression causes transcriptional changes. Hypothalamic RNA was isolated from two different HD mouse models and their littermate controls; BACHD mice with ubiquitous expression of full-length mutant HTT (mHTT) and wild-type mice with targeted hypothalamic overexpression of either wild-type HTT (wtHTT) or mHTT fragments. The mHTT and wtHTT groups showed the highest number of differentially expressed genes compared to the BACHD mouse model. Gene Set Enrichment Analysis (GSEA) with leading-edge analysis showed that suppressed sterol- and cholesterol metabolism were shared between hypothalamic wtHTT and mHTT overexpression. Most distinctive for mHTT overexpression was the suppression of neuroendocrine networks, in which qRT-PCR validation confirmed significant downregulation of neuropeptides with roles in feeding behavior; hypocretin neuropeptide precursor (Hcrt), tachykinin receptor 3 (Tacr3), cocaine and amphetamine-regulated transcript (Cart) and catecholamine-related biological processes; dopa decarboxylase (Ddc), histidine decarboxylase (Hdc), tyrosine hydroxylase (Th), and vasoactive intestinal peptide (Vip). In BACHD mice, few hypothalamic genes were differentially expressed compared to age-matched WT controls. However, GSEA indicated an enrichment of inflammatory- and gonadotropin-related processes at 10 months. In conclusion, we show that both wtHTT and mHTT overexpression change hypothalamic transcriptome profile, specifically mHTT, altering neuroendocrine circuits. In contrast, the ubiquitous expression of full-length mHTT in the BACHD hypothalamus moderately affects the transcriptomic profile.
RESUMO
Chemotherapy resistance and relapses are common in high-risk neuroblastoma (NB). Here, we developed a clinically relevant in vivo treatment protocol mimicking the first-line five-chemotherapy treatment regimen of high-risk NB and applied this protocol to mice with MYCN-amplified NB patient-derived xenografts (PDXs). Genomic and transcriptomic analyses were used to reveal NB chemoresistance mechanisms. Intrinsic resistance was associated with high genetic diversity and an embryonic phenotype. Relapsed NB with acquired resistance showed a decreased adrenergic phenotype and an enhanced immature mesenchymal-like phenotype, resembling multipotent Schwann cell precursors. NBs with a favorable treatment response presented a lineage-committed adrenergic phenotype similar to normal neuroblasts. Novel integrated phenotypic gene signatures reflected treatment response and patient prognosis. NB organoids established from relapsed PDX tumors retained drug resistance, tumorigenicity, and transcriptional cell states. This work sheds light on the mechanisms of NB chemotherapy response and emphasizes the importance of transcriptional cell states in chemoresistance.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease. The only option for curative treatment is resection of the tumor followed by standard adjuvant chemotherapy. Yet, early relapse due to chemoresistance is almost inevitable. Herein, we delineated the genetic intratumor heterogeneity in resected PDAC, with the aim to identify evolutionary patterns that may be associated with overall survival (OS) following treatment with curative intent. Potential relationships with the adjacent immune microenvironment were also examined. The genetic and immune landscapes of the regional tumor space were analyzed in nine patients with resected PDAC. Targeted deep sequencing and genome wide SNP array were followed by clonal deconvolution and phylogenetic analysis. A mathematical complexity score was developed to calculate the network extent of each phylogeny. Spatial variation in abundancy and tumor nest infiltration of immune cells was analyzed by double IHC staining. Copy-number heterogeneity was denoted as the major contributing factor to the branching architectures of the produced phylogenetic trees. Increased tree complexity was significantly inversely associated with OS, and larger regional maximum aberrations (higher treetops) were associated with increased PD-L1 expression on tumor cells. Contrastingly, an FREM1 gene amplification, found in one patient, coincided with a particularly vigorous immune response. Findings from this limited case series suggest that complex evolutionary patterns may be associated with a shorter survival in surgically treated patients with PDAC. Some hypothesis-generating associations with the surrounding immune microenvironment were also detected. IMPLICATIONS: Evolutionary copy-number patterns may be associated with survival in patients with resected PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirurgia , Humanos , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Filogenia , Microambiente Tumoral/genética , Neoplasias PancreáticasRESUMO
Phylogenetic reconstruction of cancer cell populations remains challenging. There is a particular lack of tools that deconvolve clones based on copy number aberration analyses of multiple tumor biopsies separated in time and space from the same patient. This has hampered investigations of tumors rich in aneuploidy but few point mutations, as in many childhood cancers and high-risk adult cancer. Here, we present DEVOLUTION, an algorithm for subclonal deconvolution followed by phylogenetic reconstruction from bulk genotyping data. It integrates copy number and sequencing information across multiple tumor regions throughout the inference process, provided that the mutated clone fraction for each mutation is known. We validate DEVOLUTION on data from 56 pediatric tumors comprising 253 tumor biopsies and show a robust performance on simulations of bulk genotyping data. We also benchmark DEVOLUTION to similar bioinformatic tools using an external dataset. DEVOLUTION holds the potential to facilitate insights into the development, progression, and response to treatment, particularly in tumors with high burden of chromosomal copy number alterations.
Assuntos
Aneuploidia , Classificação/métodos , Biologia Computacional/métodos , Genótipo , Neoplasias/classificação , Filogenia , Adolescente , Criança , Pré-Escolar , Humanos , Neoplasias/genética , Neuroblastoma/classificação , Neuroblastoma/genética , Polimorfismo de Nucleotídeo Único , Rabdomiossarcoma/classificação , Rabdomiossarcoma/genética , Tumor de Wilms/classificação , Tumor de Wilms/genéticaRESUMO
Clonal deconvolution of mutational landscapes is crucial to understand the evolutionary dynamics of cancer. Two limiting factors for clonal deconvolution that have remained unresolved are variation in purity and chromosomal copy number across different samples of the same tumor. We developed a semi-supervised algorithm that tracks variant calls through multi-sample spatiotemporal tumor data. While normalizing allele frequencies based on purity, it also adjusts for copy number changes at clonal deconvolution. Absent à priori copy number data, it renders in silico copy number estimations from bulk sequences. Using published and simulated tumor sequences, we reliably segregated clonal/subclonal variants even at a low sequencing depth (~50×). Given at least one pure tumor sample (>70% purity), we could normalize and deconvolve paired samples down to a purity of 40%. This renders a reliable clonal reconstruction well adapted to multi-regionally sampled solid tumors, which are often aneuploid and contaminated by non-cancer cells.
Assuntos
Aneuploidia , Evolução Molecular , Neoplasias/genética , Algoritmos , Simulação por Computador , Variações do Número de Cópias de DNA , Conjuntos de Dados como Assunto , Frequência do Gene , Humanos , MutaçãoRESUMO
Darwinian evolution of tumor cells remains underexplored in childhood cancer. We here reconstruct the evolutionary histories of 56 pediatric primary tumors, including 24 neuroblastomas, 24 Wilms tumors, and 8 rhabdomyosarcomas. Whole-genome copy-number and whole-exome mutational profiling of multiple regions per tumor were performed, followed by clonal deconvolution to reconstruct a phylogenetic tree for each tumor. Overall, 88% of the tumors exhibited genetic variation among primary tumor regions. This variability typically emerged through collateral phylogenetic branching, leading to spatial variability in the distribution of more than 50% (96/173) of detected diagnostically informative genetic aberrations. Single-cell sequencing of 547 individual cancer cells from eight solid pediatric tumors confirmed branching evolution to be a fundamental underlying principle of genetic variation in all cases. Strikingly, cell-to-cell genetic diversity was almost twice as high in aggressive compared with clinically favorable tumors (median Simpson index of diversity 0.45 vs. 0.88; P = 0.029). Similarly, a comparison of multiregional sampling data from a total of 274 tumor regions showed that new phylogenetic branches emerge at a higher frequency per sample and carry a higher mutational load in high-risk than in low-risk tumors. Timelines based on spatial genetic variation showed that the mutations most influencing relapse risk occur at initiation of clonal expansion in neuroblastoma and rhabdomyosarcoma, whereas in Wilms tumor, they are late events. Thus, from an evolutionary standpoint, some high-risk childhood cancers are born bad, whereas others grow worse over time. SIGNIFICANCE: Different pediatric cancers with a high risk of relapse share a common generic pattern of extensively branching evolution of somatic mutations. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1512/F1.large.jpg.