Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2015): 20231587, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228177

RESUMO

Flexibility in activity timing may enable organisms to quickly adapt to environmental changes. Under global warming, diurnally adapted endotherms may achieve a better energy balance by shifting their activity towards cooler nocturnal hours. However, this shift may expose animals to new or increased environmental challenges (e.g. increased predation risk, reduced foraging efficiency). We analysed a large dataset of activity data from 47 ibex (Capra ibex) in two protected areas, characterized by varying levels of predation risk (presence versus absence of the wolf-Canis lupus). We found that ibex increased nocturnal activity following warmer days and during brighter nights. Despite the considerable sexual dimorphism typical of this species and the consequent different predation-risk perception, males and females demonstrated consistent responses to heat in both predator-present and predator-absent areas. This supports the hypothesis that shifting activity towards nighttime may be a common strategy adopted by diurnal endotherms in response to global warming. As nowadays different pressures are pushing mammals towards nocturnality, our findings emphasize the urgent need to integrate knowledge of temporal behavioural modifications into management and conservation planning.


Assuntos
Comportamento Predatório , Refúgio de Vida Selvagem , Animais , Masculino , Feminino , Mamíferos/fisiologia , Cabras/fisiologia , Resposta ao Choque Térmico
2.
Mov Ecol ; 12(1): 3, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229138

RESUMO

BACKGROUND: Alterations in weather patterns due to climate change are accelerated in alpine environments, but mountains also provide a wide range of niches and potential refuge areas. In order to identify future critical habitat for mountain ungulates for effective protection, it is important to understand their spatial responses to changing weather conditions without movement constraints by human disturbance. METHODS: Using integrated step selection functions, we investigated fine-scale changes in seasonal habitat use in response to weather and time of day for 55 GPS-collared adult Alpine chamois in summer and 42 individuals in winter in a strictly protected area. RESULTS: Chamois reacted to increasing precipitation and wind speeds primarily by moving to lower elevations in summer and winter. However, reactions to high summer temperatures predominantly involved preferences for increasing tree cover density and northerly slopes. Snow depth had little effect on habitat choice, and southerly slopes were preferred in winter regardless of temperature. At night, chamois moved to steeper slopes and lower elevations than during daytime in both seasons, and to more open areas in summer. Steeper slopes were also preferred with increasing tree cover density. CONCLUSIONS: Chamois employ adaptive fine-scale adjustments in their habitat choice consistent with respect to efficient thermoregulation and protection from both weather extremes and predation risk in summer and winter. Movement responses to climate change are therefore expected to be far more complex than simple altitudinal changes in distribution. Particularly the role of forest cover must not be underestimated, as it appears to provide important thermal refuge habitat from high summer temperatures.

3.
Glob Chang Biol ; 28(8): 2657-2677, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106859

RESUMO

Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.


Assuntos
Ecossistema , Aquecimento Global , Animais , Oceano Atlântico , Dinâmica Populacional , Baleias/fisiologia
4.
Ecol Evol ; 11(22): 15740-15753, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824786

RESUMO

Depending on the habitats they live in, temperate ungulates have adapted to different degrees to seasonally changing forage and weather conditions, and to specific escape strategies from predators. Alpine chamois, a mountain ungulate, and red deer, originally adapted to open plains, would therefore be expected to differ in their physiological responses to potential stressors. Based on 742 chamois and 1557 red deer fecal samples collected year-round every 2 weeks for 4 years at the same locations within a strictly protected area in the Swiss Alps, we analyzed glucocorticoid metabolite (FGM) concentrations for both species. Results from linear mixed effects models revealed no physiological stress response to changing visitor numbers, but instead to drought conditions for both species during summer. In winter, FGM concentrations increased with increasing snow height in both species, but this response was modulated by temperature in red deer. Chamois showed a stronger stress response to increasing snow height during November and December than between January and March, while FGM concentrations increased with decreasing temperature throughout winter. An increase in FGM concentrations with decreasing forage digestibility during winter was found only for red deer. The results are thus partly in contradiction to expectations based on feeding type and adaptations to different habitats between the two species. The lack of a response to forage digestibility in chamois may reflect either better adaptation to difficult feeding conditions in subalpine forests, or, by contrast, strong constraints imposed by forage quality. The similar responses of both species to weather conditions in winter suggest that climatic factors at the elevations examined here are sufficiently harsh to be limiting to temperate ungulates regardless of their specific adaptations to this environment.

5.
Biol Conserv ; 263: 109175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34035536

RESUMO

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.

6.
Ecol Evol ; 7(11): 3713-3723, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28616168

RESUMO

Weaponry in ungulates may be costly to grow and maintain, and different selective pressures in males and females may lead to sex-biased natural survival. Sexual differences in the relationship between weapon growth and survival may increase under anthropogenic selection through culling, for example because of trophy hunting. Selection on weaponry growth under different scenarios has been largely investigated in males of highly dimorphic ungulates, for which survival costs (either natural or hunting related) are thought to be greatest. Little is known, however, about the survival costs of weaponry in males and females of weakly dimorphic species. We collected information on horn length and age at death/shooting of 407 chamois Rupicapra rupicapra in a protected population and in two hunted populations with different hunting regimes, to explore sexual differences in the selection on early horn growth under contrasting selective pressures. We also investigated the variation of horn growth and body mass in yearling males (n = 688) and females (n = 539) culled in one of the hunted populations over 14 years. The relationship between horn growth and survival showed remarkable sexual differences under different evolutionary scenarios. Within the protected population, under natural selection, we found no significant trade-off in either males or females. Under anthropogenic pressure, selection on early horn growth of culled individuals showed diametrically opposed sex-biased patterns, depending on the culling regime and hunters' preferences. Despite the selective bias between males and females in one of the hunted populations, we did not detect significant sex-specific differences in the long-term pattern of early growth. The relationship between early horn growth and natural survival in either sex might suggest stabilizing selection on horn size in chamois. Selection through culling can be strongly sex-biased also in weakly dimorphic species, depending on hunters' preferences and hunting regulations, and long-term data are needed to reveal potential undesirable evolutionary consequences.

7.
PLoS One ; 11(1): e0146458, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824867

RESUMO

Habitat heterogeneity can promote coexistence between herbivores of different body size limited to different extents by resource quantity and quality. Red deer (Cervus elaphus) are known as superior competitors to smaller species with similar diets. We compared competitive interactions and habitat use between red deer and Alpine chamois (Rupicapra rupicapra) in two adjacent valleys in a strictly protected area in the Central Alps. Red deer density was higher in the valley with higher primary productivity. Only here was horn growth in kid and yearling chamois (as a measure for body condition) negatively correlated with red deer population size, suggesting interspecific competition, and chamois selected meadows with steeper slopes and lower productivity than available on average. Conversely, red deer selected meadows of high productivity, particularly in the poorer area. As these were located mainly at lower elevations, this led to strong altitudinal segregation between the two species here. Local differences in interspecific competition thus coincided with differences in habitat preference and-segregation between areas. This suggests that spatial habitat and resource heterogeneity at the scale of adjacent valleys can provide competition refuges for competitively inferior mountain ungulates which differ from their superior competitor in their metabolic requirements.


Assuntos
Comportamento Animal/fisiologia , Cervos/fisiologia , Ecossistema , Herbivoria/fisiologia , Rupicapra/fisiologia , Animais , Animais Selvagens
8.
Mov Ecol ; 3: 6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26807258

RESUMO

BACKGROUND: The spatial distribution of forage resources is a major driver of animal movement patterns. Understanding where animals forage is important for the conservation of multi-species communities, since interspecific competition can emerge if different species use the same depletable resources. However, determining forage resources in a spatially continuous fashion in alpine grasslands at high spatial resolution was challenging up to now, because terrain heterogeneity causes vegetation characteristics to vary at small spatial scales, and methods for detection of behavioural phases in animal movement patterns were not widely available. We delineated areas coupled to the foraging behaviour of three sympatric ungulate species (chamois, ibex, red deer) using Time Local Convex Hull (T-LoCoH), a non-parametric utilisation distribution method incorporating spatial and temporal autocorrelation structure of GPS data. We used resource maps of plant biomass and plant nitrogen content derived from high-resolution airborne imaging spectroscopy data, and multinomial logistic regression to compare the foraging areas of the three ungulate species. RESULTS: We found significant differences in plant biomass and plant nitrogen content between the core foraging areas of chamois, ibex and red deer. Core foraging areas of chamois were characterised by low plant biomass and low to medium plant nitrogen content. Core foraging areas of ibex were, in contrast, characterised by high plant nitrogen content, but varied in plant biomass, and core foraging areas of red deer had high plant biomass, but varied in plant nitrogen content. CONCLUSIONS: Previous studies carried out in the same study area found no difference in forage consumed by chamois, ibex and red deer. Methodologically, those studies were based on micro-histological analysis of plant fragments identifying them to plant family or functional type level. However, vegetation properties such as productivity (biomass) or plant nutrient content can vary within vegetation communities, especially in highly heterogeneous landscapes. Thus, the combination of high spatial resolution resource maps with a utilisation distribution method allowing to generate behavioural maps (T-LoCoH) provides new insights into the foraging ecology of the three sympatric species, important for their conservation and to monitor expected future changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA