Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(36): 6336-6347, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053017

RESUMO

Materials exhibiting higher mobility than conventional organic semiconducting materials, such as fullerenes and fused thiophenes, are in high demand for applications in printed electronics. To discover new molecules that might show improved charge mobility, the adaptive design of experiments (DoE) to design molecules with low reorganization energy was performed by combining density functional theory (DFT) methods and machine learning techniques. DFT-calculated values of 165 molecules were used as an initial training dataset for a Gaussian process regression (GPR) model, and five rounds of molecular designs applying the GPR model and validation via DFT calculations were executed. As a result, new molecules whose reorganization energy is smaller than the lowest value in the initial training dataset were successfully discovered.

2.
J Phys Chem A ; 126(34): 5837-5852, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984470

RESUMO

Organic semiconductors have many desirable properties including improved manufacturing and flexible mechanical properties. Due to the vastness of chemical space, it is essential to efficiently explore chemical space when designing new materials, including through the use of generative techniques. New generative machine learning methods for molecular design continue to be published in the literature at a significant rate but successfully adapting methods to new chemistry and problem domains remains difficult. These challenges necessitate continual method evaluation to probe method viability for use in alternative applications not covered in the original works. In continuation of our previous work, we evaluate four additional machine-learning-based de novo methods for generating molecules with high predicted hole mobility for use in semiconductor applications. The four generative methods evaluated here are (1) Molecule Deep Q-Networks (MolDQN), which utilizes Deep-Q learning to directly optimize molecular structure graphs for desired properties instead of generating SMILES, (2) Graph-based Genetic Algorithm (GraphGA), which uses a genetic algorithm for optimization where crossovers and mutations are defined in terms of RDKit's reaction SMILES, (3) Generative Tensorial Reinforcement Learning (GENTRL), which is a variational autoencoder (VAE) with a learned prior distribution and optimized using reinforcement learning, and (4) Monte Carlo tree search exploration of chemical space in conjunction with a recurrent neural network (RNN) decoder (ChemTS). The generated molecules were evaluated using density functional theory (DFT) and we discovered better performing molecules with the GraphGA method compared to the other approaches.

3.
ACS Nano ; 13(11): 12980-12986, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31674762

RESUMO

Structure dependent differential tunneling conductance, dI/dV, profiles obtained using scanning tunneling microscopy on both (110)-cleaved surfaces and (001)-growth surfaces in InAs/GaSb and InAs/InxGa1-xSb quantum wells (QWs), which are platforms of two-dimensional topological insulator (2D-TI), clearly demonstrated the edge states formed on the 2D-TI surfaces. The results were confirmed by kp-based electronic structure calculations, which demonstrated that the edge states extended to the 10 nm range from cleaved surfaces generated in the appropriately designed InAs/(In)GaSb QW systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA