Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Res ; 221: 115339, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682445

RESUMO

The changes of physicochemical and biochemical parameters of a silty loam (S1) and sandy loam (S2) vineyard soils added with spent mushroom substrate (SMS) or SMS composted with ophite (OF) as rock dust (SMS + OF) were studied. Two doses of SMS or SMS + OF (25 and 100 Mg ha-1) were applied for two consecutive years (2020-2021) and changes of soil physicochemical parameters, and dehydrogenase activity (DHA), respiration (RES), microbial biomass (BIO), and the phospholipid fatty acids (PLFAs) profile were assayed on a temporal basis. The results showed an increase in soil organic carbon (OC) content, total and mineralised N, P, and K, especially when the highest SMS dose was applied to soils. Repeated application caused OC content over time up to 2.3 times higher than initial content in the silty loam soil. This increase was not observed in sandy soil, possibly due to a higher bioavailability of OC, as indicated by the evolution of extractable humic acid/fulvic acid pools. In both soils, all biochemical parameters increased after amendment, being favoured both by the OC and by the presence of OF. Significant positive correlations were found between DHA, RES and BIO, and OC content especially in the first part and then levelled off after the second dose application. Total bacterial or fungal PLFAs patterns reflected the variation of BIO by SMS application. The higher growth of fungi vs. bacterial community in amended soils was recorded after the first SMS application, although the opposite effect occurred after the second application, with similar results in both soils. The findings indicate that the application of SMS or SMS + OF in vineyard soils could be an appropriate agronomic management practice for maintaining soil sustainability, although doses and application times of these amendments should first be evaluated depending on soil texture.


Assuntos
Agaricales , Poluentes do Solo , Solo/química , Fazendas , Agaricales/química , Carbono , Poluentes do Solo/análise , Areia
2.
Environ Pollut ; 284: 117463, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34090253

RESUMO

Sustainable agriculture practices and integrated pest management for avoiding environmental pollution are necessary to maintain a high yield in vineyard areas. Pesticide residues in groundwater in a vineyard area of La Rioja (Spain) have been evaluated in previous years, and they could now have varied after farmers have adopted the different measures recommended. Accordingly, this research's objectives were (i) to evaluate the occurrence and seasonal distribution (spring, summer, and autumn samplings) of pesticides (36) plus their degradation products (DP) (11) in water and soil samples (23 + 15) in La Rioja (Northern Spain), and (ii) to compare the current water quality (2019) with that determined previously (2011). A multi-residue method based on solid phase extraction (for water samples) or solid liquid extraction (for soil samples) and high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) was used to determine and quantify pesticides. The results reveal the presence in waters of 30 compounds from those selected (15 fungicides + 2 DP, 7 insecticides + 1 DP, and 3 herbicides +2 DP), with 14 of them at concentrations > 0.1 µg L-1 (water quality threshold for human consumption). The highest number of compounds was detected in summer (waters) and spring (soils). The pesticides most frequently detected in water samples were the fungicides metalaxyl, tebuconazole, and boscalid, with the last one being the compound found in the highest number of soil samples. The comparison of water pollution in 2011 and 2019 indicates a significant decrease in the total concentration of herbicides, fungicides and insecticides in 95-100%, 76-90%, and 42-85% of samples in the three campaigns, respectively. The results indicate that an optimized and sustainable use of pesticides in intensive and high-yield agricultural areas could reduce environmental pollution.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , Fazendas , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Solo , Espanha , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 264: 114666, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32380396

RESUMO

Water pollution by pesticides used in agriculture is currently a major concern both in Spain and in Europe as a whole, prompting the need to evaluate water quality and ecological risk in areas of intensive agriculture. This study involved monitoring pesticide residues and certain degradation products in surface and ground waters of the Denomination of Origin (DO) Jumilla vineyard area in Spain. Sixty-nine pesticides were selected and evaluated at twenty-one sampling points using a multi-residue analytical method, based on solid-phase extraction (SPE) and analysis by liquid chromatography coupled with mass spectrometry (LC-MS), providing reliable results. Twenty-six compounds from those selected were detected in the samples analyzed (eleven insecticides including one degradation product, nine herbicides, and six fungicides) and fifteen of them were found in concentrations over 0.1 µg L-1 (upper threshold established by the EU for pesticides detected in waters for human consumption). Indoxacarb was present in more than 70% of the samples, being the most frequently detected compound in water samples. Some pesticides were ubiquitous in all the water samples. Ecotoxicological risk indicators, toxic units (TUs) and risk quotients (RQs), for algae, Daphnia magna and fish were calculated to estimate the environmental risk of the presence of pesticides in waters. The compounds with the highest risk were the herbicides pendimethalin, with RQ values > 1 for the three aquatic organisms, and diflufenican, posing a high risk for algae and fish, and the insecticide chlorpyrifos, with a high risk for Daphnia magna and fish. The ∑TUi determined for water at each sampling point posed only a high risk for the three aquatic organisms in a sample. These results are important for considering the selection of pesticides with less environmental risk in intensive agricultural areas.


Assuntos
Resíduos de Praguicidas/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Europa (Continente) , Fazendas , Humanos , Medição de Risco , Espanha
4.
Sci Total Environ ; 725: 138374, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278182

RESUMO

The dissipation and persistence of two cereals herbicides, chlorotoluron and flufenacet, were studied in a field experiment including three replicated plots of unamended soil (S), soil amended with spent mushroom substrate (S + SMS), and soil amended with green compost (S + GC), during the winter wheat cultivation campaign. The SMS and GC organic residues were applied to the soil at rates of 140 or 85 t residue ha-1, and herbicides were sprayed as Erturon® and Herold® formulations for chlorotoluron and flufenacet, respectively. Concentrations of both herbicides and of their metabolites were regularly measured in the three soil treatments (0-10 cm) from 0 to 339 days. The dissipation kinetics fitted well the single first order (SFO) model, except that of chlorotoluron that fitted the first order multi-compartment (FOMC) model better in the unamended soil. The dissipation rates of herbicides were lower in amended than in unamended soils. The results also showed that the DT50 of chlorotoluron (66.2-88.0 days) and flufenacet (117-145 days) under field conditions were higher than those previously obtained at laboratory scale highlighting the importance of the changing environmental conditions on the dissipation process. Similarly, the formation of chlorotoluron and flufenacet metabolites under field conditions was different from that previously observed in the laboratory. The performance of the MACRO pesticide fate model, parameterized with laboratory data, was then tested against field data. There was a very good agreement between measured and simulated chlorotoluron residue levels in the three soil treatments, while the ability of the model to reproduce the dissipation of flufenacet was good in the unamended soil and very good in S + SMS and S + GC soils. MACRO might be used to estimate the remaining amounts of herbicides in amended soils from degradation data previously obtained at laboratory scale. This would help to manage herbicide doses in different environmental conditions to preserve the sustainability of agricultural systems.

5.
Sci Total Environ ; 609: 161-171, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28750227

RESUMO

Pesticides are needed to maintain high production in the vineyard area of La Rioja (Spain), and monitoring their spatial distribution is a priority for preserving the quality of natural resources. Accordingly, the purpose of this work was to conduct a study to evaluate the presence and seasonal distribution of herbicide and insecticide residues in ground and surface waters in this region. The monitoring network comprised 12 surface waters and 78 groundwaters, covering the three subareas (63,593ha) into which the vineyard region is divided. The quality of natural waters was examined through the analysis of twenty-two herbicides, eight of their main degradation products, and eight insecticides. Pesticides were extracted by solid-phase extraction, and analysed by gas chromatography-mass spectrometry or by liquid-chromatography-mass spectrometry. The results reveal the presence of most of the herbicides and insecticides included in the study in one or more of the samples collected during the four campaigns. The herbicide terbuthylazine and its metabolite desethylterbuthylazine were the compounds more frequently detected (present in >65% of the samples across all the campaigns). Other compounds detected in >50% of the samples in one sampling campaign were the herbicides fluometuron, metolachlor, alachlor and ethofumesate. Insecticides were present in a small number of samples, with only pirimicarb being detected in >25% of the samples in March and June campaigns. The results reveal that the sum of compounds detected (mainly herbicides) was higher than 0.5µgL-1 in >50% of the samples, especially in the campaigns with the highest application of these compounds. A possible recovery of the quality of the waters was detected outside the periods of crop cultivation, although more monitoring programmes are needed to confirm this trend with a view to preventing and/or maintaining the sustainability of natural resources.


Assuntos
Monitoramento Ambiental , Herbicidas/análise , Inseticidas/análise , Estações do Ano , Poluentes Químicos da Água/análise , Fazendas , Espanha , Recursos Hídricos
6.
Environ Sci Pollut Res Int ; 23(22): 22924-22936, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27578090

RESUMO

The temporal trends of fungicides in surface and ground water in 90 samples, including both surface waters (12) and ground waters (78) from an extensive vineyard area located in La Rioja (Spain), were examined between September 2010 and September 2011. Fungicides are used in increasing amounts on vines in many countries, and they may reach the water resources. However, few data have been published on fungicides in waters, with herbicides being the most frequently monitored compounds. The presence, distribution and year-long evolution of 17 fungicides widely used in the region and a degradation product were evaluated in waters during four sampling campaigns. All the fungicides included in the study were detected at one or more of the points sampled during the four campaigns. Metalaxyl, its metabolite CGA-92370, penconazole and tebuconazole were the fungicides detected in the greatest number of samples, although myclobutanil, CGA-92370 and triadimenol were detected at the highest concentrations. The highest levels of individual fungicides were found in Rioja Alavesa, with concentrations of up to 25.52 µg L-1, and more than 40 % of the samples recorded a total concentration of >0.5 µg L-1. More than six fungicides were positively identified in a third of the ground and surface waters in all the sampling campaigns. There were no significant differences between the results obtained in the four sampling campaigns and corroborated a pattern of diffuse contamination from the use of fungicides. The results confirm that natural waters in the study area are extremely vulnerable to contamination by fungicides and highlight the need to implement strategies to prevent and control water contamination by these compounds.


Assuntos
Fazendas , Fungicidas Industriais/análise , Água Subterrânea/química , Rios/química , Triazóis/análise , Poluentes Químicos da Água/análise , Estações do Ano , Espanha , Vitis/crescimento & desenvolvimento
7.
Environ Sci Pollut Res Int ; 23(9): 9192-203, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26832876

RESUMO

Different strategies are now being optimized to prevent water from agricultural areas being contaminated by pesticides. The aim of this work was to optimize the adsorption of non-polar (tebuconazole, triadimenol) and polar (cymoxanil, pirimicarb) pesticides by soils after applying the biosorbent spent mushroom substrate (SMS) at different rates. The adsorption isotherms of pesticides by three soils and SMS-amended soils were obtained and the adsorption constants were calculated. The distribution coefficients (K d) increased 1.40-23.1 times (tebuconazole), 1.08-23.7 times (triadimenol), 1.31-42.1 times (cymoxanil), and 0.55-23.8 times (pirimicarb) for soils amended with biosorbent at rates between 2 and 75 %. Increasing the SMS rates led to a constant increase in adsorption efficiency for non-polar pesticides but not for polar pesticides, due to the increase in the organic carbon (OC) content of soils as indicated by K OC values. The OC content of SMS-amended soils accounted for more than 90 % of the adsorption variability of non-polar pesticides, but it accounted for only 56.3 % for polar pesticides. The estimated adsorption of SMS-amended soils determined from the individual adsorption of soils and SMS was more consistent with real experimental values for non-polar pesticides than for polar pesticides. The results revealed the use of SMS as a tool to optimize pesticide adsorption by soils in dealing with specific contamination problems involving these compounds.


Assuntos
Praguicidas/análise , Poluentes do Solo/análise , Solo/química , Poluição da Água/prevenção & controle , Adsorção , Agaricales/química , Agricultura , Triazóis
8.
Sci Total Environ ; 514: 351-8, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25679815

RESUMO

Spatial and temporal evaluations of seventeen pesticides and some of their degradation products were carried out in seventeen vineyard soils from La Rioja region (Spain). The soils were sampled in March, June and October 2012, and the pesticides were selected among those previously detected in surface and ground waters from the same area. All pesticides were detected in some of the soils in the three different areas of La Rioja at the different sampling times, with only the metalaxyl metabolite, CGA-62826, not being detected in any of the soils sampled in October. The highest concentrations were determined for the fungicides metalaxyl (11.5 µg kg(-1)) and triadimenol (26.1 µg kg(-1)), the herbicides fluometuron (174.6 µg kg(-1)) and terbuthylazine (403.3 µg kg(-1)), and the insecticide methoxyfenozide (4.61 µg kg(-1)). While the highest total concentration of pesticides was detected in March, the highest number of positive detections was recorded in June (46), as opposed to 26 and 19 in March and October, respectively. Significant differences were detected in the concentrations of herbicides in soils from the three areas in La Rioja, but this was not the case for the fungicides and the insecticides. The study revealed a more intensive use of herbicides in March, while the use of insecticides and fungicides probably depended on the specific needs of crops and/or the onset of diseases. The results are consistent with the residues found in waters in the region, and highlight the need to implement strategies for more efficient application of these compounds to avoid risk of water contamination.


Assuntos
Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Monitoramento Ambiental , Espanha , Vinho
9.
Sci Total Environ ; 476-477: 611-21, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24496034

RESUMO

Dissipation kinetics of pesticides belonging to three chemical groups (linuron, diazinon and myclobutanil) was studied in an unamended agricultural soil and in this soil amended with three organic residues: sewage sludge (SS), grape marc (GM) and spent mushroom substrate (SMS). The soils were incubated with the residues outdoors for one and 12 months. Mineralized, extracted and non-extractable fractions were also studied for (14)C-linuron and (14)C-diazinon. The dissipation kinetics was fitted to single first-order or first-order multicompartment models. The dissipation rate (k) decreased in the order diazinon>linuron>myclobutanil, and DT50 values decreased for linuron (1.6-4.8 times) or increased for myclobutanil (1.7-2.6 times) and diazinon (1.8-2.3 times) in the amended soils relative to the unamended soil. The lowest DT50 values for the three pesticides were recorded in GM-amended soil, and the highest values in SMS-amended soil. After 12 months of soil incubation, DT50 values decreased in both the unamended and amended soils for linuron, but increased for the unamended and SMS-amended soil for diazinon and myclobutanil. A certain relationship was observed between the sorption of pesticides by the soils and DT50 values, although it was significant only for myclobutanil (p<0.05). Dissipation mechanism recorded the lowest mineralization of (14)C-pesticides in the GM-soil despite the highest dissipation rate in this soil. The extracted (14)C-residues decreased with incubation time, with increased formation of non-extractable residues, higher in amended soils relative to the unamended soil. Soil dehydrogenase activity was, in general, stimulated by the addition of the organic amendments and pesticides to the soil after one month and 12 months of incubation. The results obtained revealed that the simultaneous use of amendments and pesticides in soils requires a previous study in order to check the environmental specific persistence of these compounds and their effectiveness in amended soils.


Assuntos
Modelos Químicos , Praguicidas/química , Poluentes do Solo/química , Solo/química , Agaricales , Agricultura , Diazinon/química , Linurona/química , Nitrilas/química , Esgotos , Triazóis/química
10.
J Agric Food Chem ; 60(28): 6936-45, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22715816

RESUMO

The degradation kinetics and formation of metabolites for fungicides of different chemical classes (iprovalicarb, metalaxyl, penconazole, and pyrimethanil) and determination of bound residues for metalaxyl and penconazole were studied in both an unamended vineyard soil and in the same soil amended with two spent mushroom substrates (composted (C-SMS1) and fresh (F-SMS2)). The degradation kinetics was fitted to single first-order or first-order multicompartment patterns. Degradation rates decreased in C-SMS1-amended soils for all fungicides as compared to unamended soil, but in F-SMS2-amended soils, they decreased only for iprovalicarb and penconazole. The DT(50) values were higher by up to 1.8 (metalaxyl), 3.8 (pyrimethanil), 4.1 (iprovalicarb), and >1000 (penconazole) times in the soil plus C-SMS1 compared to those for soil plus F-SMS2 or unamended soil. The dissipation mechanism recorded the highest mineralization in the unamended soil for (14)C-metalaxyl and (14)C-penconazole, with the highest formation of nonextractable residues in the F-SMS2-amended soil for (14)C-metalaxyl. The results are consistent with (1) the chemical characteristics of each SMS (total and soluble organic carbon) controlling sorption and the bioavailability of fungicides and (2) the microbial activity of SMS-amended soils, which affects fungicide biodegradation. The findings of this work highlight the potential of SMS amendments with different characteristics to decrease or increase the degradation rate of a fungicide in a vineyard soil.


Assuntos
Agaricales , Fungicidas Industriais/análise , Solo/química , Vitis/crescimento & desenvolvimento , Adsorção , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos
11.
J Environ Qual ; 41(3): 814-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565263

RESUMO

The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications.


Assuntos
Agaricales , Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Fungicidas Industriais/química , Poluentes do Solo/química , Adsorção , Resíduos/análise
12.
Environ Monit Assess ; 184(5): 3359-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21713466

RESUMO

The long-term variability of total Cu content from fungicides applied in a certified wine region of Spain (La Rioja) and of other metals (Cd, Cr, Ni, Pb, and Zn) was evaluated in three young vineyard soils and subsoils unamended and amended with spent mushroom substrates (SMS) over a 3-year period (2006-2008). SMS is a promising agricultural residue as an amendment to increase the soil organic matter content but may modify the behaviour of metals from pesticide utilisation in vineyards. Fresh and composted SMS was applied each year at a rate of 25 t ha(-1) (dry-weight). Copper concentrations in the three unamended soils were 21.2-88.5, 25.5-77.1, and 29.4-78.4 mg kg(-1). They exceeded natural Cu concentrations of the region and reference sub-lethal hazardous concentration for soil organism. The concentrations of Cd, Ni, Pb, and Zn were largely below the sub-lethal limits. Thus, although Cu levels were lower than those of established vineyards, vine performance, and productivity might be affected. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. The amendment practice seemed to have caused temporarily Cu mobilization respect to untreated soils. Total zinc concentrations fall within the range of the natural soil of La Rioja and were significantly affected (p < 0.05) especially by fresh state SMS addition, with increasing up to 75% respect to untreated specimen. The results indicated a build-up of fresh sites for metal retention at both surface and subsurface level, although no accumulation of metals was observed in the short-term period. However, the benefit for soils and the negative effects need to be monitored in the long run.


Assuntos
Fungicidas Industriais/análise , Metais/análise , Poluentes do Solo/análise , Agricultura , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Recuperação e Remediação Ambiental/métodos , Espanha , Vitis , Vinho
13.
Ecotoxicol Environ Saf ; 74(6): 1480-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21543118

RESUMO

The persistence, mobility and degradation of tebuconazole were assessed under field conditions in a sandy clay loam soil amended with spent mushroom substrate (SMS) at two rates. The aim was to evaluate the environmental impact of the simultaneous application of SMS and fungicide in a vineyard soil. SMS is the pasteurized and composted organic material remaining after a crop of mushroom is produced. SMS is generated in increasing amounts in La Rioja region (Spain), and could be used as soil amendment in vineyard soils, where fungicides are also applied in large amounts. The study was carried out in 18 experimental plots (6 treatments and 3 replicates per treatment) over one year. Laboratory experiments were also conducted to verify the changes over time in the adsorption of fungicide by soils and in soil dehydrogenase activity caused by the fungicide and/or SMS. Tebuconazole dissipation followed biphasic kinetics with a rapid dissipation phase, followed by a slow dissipation phase. Half-life (DT50) values ranged from 8.2 to 12.4 days, with lower DT50 for amended soils when compared to the non-amended controls. The distribution of tebuconazole through the soil profile (0-50 cm) determined at 124, 209 and 355 days after its application indicated the higher mobility of fungicide to deeper soil layers in amended soils revealing the influence of solid and dissolved organic matter from SMS in this process. Tebuconazole might be available for biodegradation although over time only chemical or photochemical degradation was evident in surface soils. The results obtained highlight the interest of field and laboratory data to design rational applications of SMS and fungicide when they are jointly applied to prevent the possible risk of water contamination.


Assuntos
Agaricales/metabolismo , Recuperação e Remediação Ambiental/métodos , Fungicidas Industriais/metabolismo , Poluentes do Solo/metabolismo , Triazóis/metabolismo , Adsorção , Fungicidas Industriais/análise , Meia-Vida , Cinética , Oxirredutases/metabolismo , Medição de Risco , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Espanha , Triazóis/análise
14.
J Agric Food Chem ; 57(20): 9634-42, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19795880

RESUMO

The effect of the addition of fresh and composted spent mushroom substrates (F-SMS and C-SMS) to vineyard soils on the adsorption-desorption of penconazole and metalaxyl was studied under laboratory conditions. SMS is a promising agricultural residue as an amendment to increase the soil organic matter (OM) content. It may also modify the behavior of fungicides applied to vineyards. Freundlich Kf adsorption constants of both fungicides by soils and subsoils from three experimental plots unamended and amended in the field ranged between 2.78 and 13.4 (penconazole) and 0.14 and 0.67 (metalaxyl) with scant differences for unamended soil and subsoil. However, Kf values of amended soils were higher than those corresponding to subsoils and generally higher than those of unamended soils (up to 2.3 times for penconazole and 1.3 times for metalaxyl). The influence of SMS treatment (fresh or composted) was observed in the adsorption of the most hydrophobic fungicide penconazole. Simple and multiple correlations between soil and subsoil properties and adsorption constants indicated the influence of the OM on the adsorption of both fungicides, together with the clay, silt, and CaCO(3) content for metalaxyl and the pH for penconazole. The results revealed changes in the adsorption-desorption processes of these fungicides, which could give rise to a decrease in the mobility of metalaxyl (highly water-soluble) and an increase in the retention of penconazole (more hydrophobic). These effects could have an impact on surface and/or groundwater contamination.


Assuntos
Agaricales , Recuperação e Remediação Ambiental/métodos , Fungicidas Industriais/química , Poluentes do Solo/química , Triazóis/química , Resíduos/análise , Adsorção , Agaricales/química
15.
J Agric Food Chem ; 57(20): 9643-50, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20560627

RESUMO

Mobility of fungicides penconazole and metalaxyl in unamended and amended vineyard soils with fresh and composted spent mushroom substrates (F-SMS and C-SMS) was studied. Experiments were performed in non-incubated and incubated (outdoors for 77 days) undisturbed soil cores under non-saturated flow conditions. Breakthrough curves (BTC) of metalaxyl leaching were delayed with regard to the tracer ion, and they showed an incomplete leaching in all soil cores after the addition of 2.5-4.5 pore volumes. A decrease of the maximum peak concentration in C-SMS soils with regard to unamended soils (up to 24-fold in Viana soil) and an increase in the fungicide retention by soils (up to 8-fold in the first segment of Viana soil core) was observed. However, a decrease (up to 2.6-fold in Sajazarra soil) or an increase (up to 1.4-fold in Aldeanueva soil) of the maximum peak concentration in F-SMS soils was observed. No leaching of penconazole was observed in all cases. After fungicide incubation in soil cores, the amounts of metalaxyl retained and leached decreased significantly by 1.24-37.8-fold and 1.17-302-fold, respectively, whereas no changes were observed for penconazole. Degradation of metalaxyl occurred in non-incubated soil and increased after incubation (two metalaxyl metabolites were detected in the leachates and the soil extracts), but it was not seen for penconazole in any case. In consequence, the addition of SMS as amendment to soil (especially C-SMS) enhanced adsorption of both fungicides, although metalaxyl could be available for degradation. This effect contributes to prevent groundwater contamination by metalaxyl, but it could contribute to increase the surface water contamination by penconazole, because adsorption protects this fungicide from degradation, increasing its persistence in soils.


Assuntos
Alanina/análogos & derivados , Recuperação e Remediação Ambiental/métodos , Fungicidas Industriais/química , Poluentes do Solo/química , Triazóis/química , Resíduos/análise , Alanina/química
16.
J Agric Food Chem ; 56(16): 7339-46, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18642844

RESUMO

The sorption-desorption of two different pesticides, linuron and metalaxyl, by woods was studied. Sorbent/solution ratio and sorption kinetics were also determined. Untreated wood and water, NaOH, HCl, and octadecyltrimethylammonium bromide (ODTMA) treated pine (softwood) and oak (hardwood) were used as sorbents. Linuron and metalaxyl were sorbed by untreated woods up to 80 and 40%, respectively, in a short time when the sorbent/solution ratio of 1:10 was used. Sorption of pesticides was significantly higher by pine, having higher lignin content, than by oak. Freundlich sorption constants (K(f)) were 96.2 and 74.4 (linuron) and 8.28 and 4.95 (metalaxyl) for untreated pine and oak woods and increased 1.04-2.35-fold (linuron) and 1.33-2.17-fold (metalaxyl) when woods were treated. The sorption was higher by HCl- and ODTMA-treated woods. Additionally, Freundlich desorption constants also indicated greater sorption irreversibility of both pesticides for treated woods than for untreated woods. The results revealed wood residues as a promising, low-cost, and environmentally friendly material to immobilize pesticides in soils, preventing water contamination. Wood treatments aimed at removing soluble wood extracts or at modifying wood chemical structure could increase their sorption capacity.


Assuntos
Alanina/análogos & derivados , Fungicidas Industriais/química , Herbicidas/química , Linurona/química , Madeira/química , Adsorção , Alanina/química , Alcanos/farmacologia , Ácido Clorídrico/farmacologia , Cinética , Pinus/química , Compostos de Amônio Quaternário/farmacologia , Quercus/química , Hidróxido de Sódio/farmacologia , Soluções , Poluição da Água/prevenção & controle , Madeira/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA