Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Immunol ; 9(94): eadd1967, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608039

RESUMO

Resident tissue macrophages (RTMs) encompass a highly diverse set of cells abundantly present in every tissue and organ. RTMs are recognized as central players in innate immune responses, and more recently their importance beyond host defense has started to be highlighted. Despite sharing a universal name and several canonical markers, RTMs perform remarkably specialized activities tailored to sustain critical homeostatic functions of the organs they reside in. These cells can mediate neuronal communication, participate in metabolic pathways, and secrete growth factors. In this Review, we summarize how the division of labor among different RTM subsets helps support tissue homeostasis. We discuss how the local microenvironment influences the development of RTMs, the molecular processes they support, and how dysregulation of RTMs can lead to disease. Last, we highlight both the similarities and tissue-specific distinctions of key RTM subsets, aiming to coalesce recent classifications and perspectives into a unified view.


Assuntos
Imunidade Inata , Macrófagos , Homeostase
2.
Genome Res ; 33(5): 729-740, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127330

RESUMO

Understanding the genetic causes of trait variation is a primary goal of genetic research. One way that individuals can vary genetically is through variable pangenomic genes: genes that are only present in some individuals in a population. The presence or absence of entire genes could have large effects on trait variation. However, variable pangenomic genes can be missed in standard genotyping workflows, owing to reliance on aligning short-read sequencing to reference genomes. A popular method for studying the genetic basis of trait variation is linkage mapping, which identifies quantitative trait loci (QTLs), regions of the genome that harbor causative genetic variants. Large-scale linkage mapping in the budding yeast Saccharomyces cerevisiae has found thousands of QTLs affecting myriad yeast phenotypes. To enable the resolution of QTLs caused by variable pangenomic genes, we used long-read sequencing to generate highly complete de novo genome assemblies of 16 diverse yeast isolates. With these assemblies, we resolved QTLs for growth on maltose, sucrose, raffinose, and oxidative stress to specific genes that are absent from the reference genome but present in the broader yeast population at appreciable frequency. Copies of genes also duplicate onto chromosomes where they are absent in the reference genome, and we found that these copies generate additional QTLs whose resolution requires pangenome characterization. Our findings show the need for highly complete genome assemblies to identify the genetic basis of trait variation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 120(8): e2217194120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800387

RESUMO

Secreted protein toxins are widely used weapons in conflicts between organisms. Elucidating how organisms genetically adapt to defend themselves against these toxins is fundamental to understanding the coevolutionary dynamics of competing organisms. Within yeast communities, "killer" toxins are secreted to kill nearby sensitive yeast, providing a fitness advantage in competitive growth environments. Natural yeast isolates vary in their sensitivity to these toxins, but to date, no polymorphic genetic factors contributing to defense have been identified. We investigated the variation in resistance to the killer toxin K28 across diverse natural isolates of the Saccharomyces cerevisiae population. Using large-scale linkage mapping, we discovered a novel defense factor, which we named KTD1. We identified many KTD1 alleles, which provided different levels of K28 resistance. KTD1 is a member of the DUP240 gene family of unknown function, which is rapidly evolving in a region spanning its two encoded transmembrane helices. We found that this domain is critical to KTD1's protective ability. Our findings implicate KTD1 as a key polymorphic factor in the defense against K28 toxin.


Assuntos
Micotoxinas , Proteínas de Saccharomyces cerevisiae , Toxinas Biológicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores Matadores de Levedura/genética , Fatores Matadores de Levedura/metabolismo , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Micotoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
JMIR Form Res ; 6(9): e30113, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36178712

RESUMO

BACKGROUND: Millions of workers experience work-related ill health every year. The loss of working days often accounts for poor well-being because of discomfort and stress caused by the workplace. The ongoing pandemic and postpandemic shift in socioeconomic and work culture can continue to contribute to adverse work-related sentiments. Critically investigating state-of-the-art technologies, this study identifies the research gaps in recognizing workers' need for well-being support, and we aspire to understand how such evidence can be collected to transform the workforce and workplace. OBJECTIVE: Building on recent advances in sentiment analysis, this study aims to closely examine the potential of social media as a tool to assess workers' emotions toward the workplace. METHODS: This study collected a large Twitter data set comprising both pandemic and prepandemic tweets facilitated through a human-in-the-loop approach in combination with unsupervised learning and meta-heuristic optimization algorithms. The raw data preprocessed through natural language processing techniques were assessed using a generative statistical model and a lexicon-assisted rule-based model, mapping lexical features to emotion intensities. This study also assigned human annotations and performed work-related sentiment analysis. RESULTS: A mixed methods approach, including topic modeling using latent Dirichlet allocation, identified the top topics from the corpus to understand how Twitter users engage with discussions on work-related sentiments. The sorted aspects were portrayed through overlapped clusters and low intertopic distances. However, further analysis comprising the Valence Aware Dictionary for Sentiment Reasoner suggested a smaller number of negative polarities among diverse subjects. By contrast, the human-annotated data set created for this study contained more negative sentiments. In this study, sentimental juxtaposition revealed through the labeled data set was supported by the n-gram analysis as well. CONCLUSIONS: The developed data set demonstrates that work-related sentiments are projected onto social media, which offers an opportunity to better support workers. The infrastructure of the workplace, the nature of the work, the culture within the industry and the particular organization, employers, colleagues, person-specific habits, and upbringing all play a part in the health and well-being of any working adult who contributes to the productivity of the organization. Therefore, understanding the origin and influence of the complex underlying factors both qualitatively and quantitatively can inform the next generation of workplaces to drive positive change by relying on empirically grounded evidence. Therefore, this study outlines a comprehensive approach to capture deeper insights into work-related health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA