Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plants (Basel) ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674490

RESUMO

Genome-wide association studies (GWAS) are among the genetic tools for the mining of genomic loci associated with useful agronomic traits. The study enabled us to find new genetic markers associated with grain yield as well as quality. The sample under study consisted of spring wheat cultivars developed in different decades of the last century. A panel of 186 accessions was evaluated at VIR's experiment station in Pushkin across a 3-year period of field trials. In total, 24 SNPs associated with six productivity characteristics were revealed. Along with detecting significant markers for each year of the field study, meta-analyses were conducted. Loci associated with useful yield-related agronomic characteristics were detected on chromosomes 4A, 5A, 6A, 6B, and 7B. In addition to previously described regions, novel loci associated with grain yield and quality were identified during the study. We presume that the utilization of contrast cultivars which originated in different breeding periods allowed us to identify new markers associated with useful agronomic characteristics.

2.
Nat Commun ; 15(1): 2004, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443379

RESUMO

Mutations in the human PARK7 gene that encodes protein DJ-1 lead to familial Parkinsonism due to loss of dopaminergic neurons. However, the molecular function of DJ-1 underpinning its cytoprotective effects are unclear. Recently, DJ-1 has been shown to prevent acylation of amino groups of proteins and metabolites by 1,3-bisphosphoglycerate. This acylation is indirect and thought to proceed via the formation of an unstable intermediate, presumably a cyclic 3-phosphoglyceric anhydride (cPGA). Several lines of evidence indicate that DJ-1 destroys cPGA, however this enzymatic activity has not been directly demonstrated. Here, we report simple and effective procedures for synthesis and quantitation of cPGA and present a comprehensive characterization of this highly reactive acylating electrophile. We demonstrate that DJ-1 is an efficient cPGA hydrolase with kcat/Km = 5.9 × 106 M-1s-1. Experiments with DJ-1-null cells reveal that DJ-1 protects against accumulation of 3-phosphoglyceroyl-lysine residues in proteins. Our results establish a definitive cytoprotective function for DJ-1 that uses catalytic hydrolysis of cPGA to mitigate the damage from this glycolytic byproduct.


Assuntos
Glicólise , Hidrolases , Humanos , Hidrólise , Acilação , Anidridos
3.
Life (Basel) ; 12(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36295049

RESUMO

Vischeria punctata is a unicellular microalga that has industrial potential, as it can produce substances with beneficial properties. Among them, endopolysaccharides (accumulated in cells) and exopolysaccharides (released by cells into the culture medium) are of particular interest. This study aimed to investigate the effect of nutrient medium composition on the growth of V. punctata biomass and the synthesis of polysaccharides by microalgae. The effect of modifying a standard nutrient medium and varying cultivation parameters (temperature, time, and extractant type) on the yield of exopolysaccharides produced by the microalgae V. punctate was investigated. The methods of spectrophotometry, ultrasonic extraction, and alcohol precipitation were used in the study. It was found that after 61 days of cultivation, the concentration of polysaccharides in the culture medium was statistically significantly higher (p <0.05) when using a Prat nutrient medium (984.9 mg/g d.w.) than BBM 3N (63.0 mg/g d.w.). It was found that the increase in the V. punctata biomass when cultivated on different nutrient media did not differ significantly. The maximum biomass values on Prat and BBM 3N media were 1.101 mg/g d.w. and 1.120 mg/g d.w., respectively. Neutral sugars and uronic acids were found in the culture media. It follows on from the obtained data that the modified PratM medium was more efficient for extracting polysaccharides from V. punctata. The potential of microalgae as new sources of valuable chemicals (polysaccharides), which can be widely used in technologies for developing novel functional foods, biologically active food supplements, and pharmaceutical substances, was studied.

4.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144605

RESUMO

The Baltic Sea algae species composition includes marine euryhaline, freshwater euryhaline, and true brackish water forms. This study aimed to isolate a lipid-pigment complex from microalgae of the Baltic Sea (Kaliningrad region) and investigate its antimicrobial activity against Gram-positive and Gram-negative bacteria. Microalgae were sampled using a box-shaped bottom sampler. Sequencing was used for identification. Spectroscopy and chromatography with mass spectroscopy were used to study the properties of microalgae. Antibiotic activity was determined by the disc diffusion test. Lipids were extracted using the Folch method. Analysis of the results demonstrated the presence of antimicrobial activity of the lipid-pigment complex of microalgae against E. coli (the zone diameter was 17.0 ± 0.47 mm and 17.0 ± 0.21 mm in Chlorella vulgaris and Arthrospira platensis, respectively) and Bacillus pumilus (maximum inhibition diameter 16.0 ± 0.27 mm in C. vulgaris and 16.0 ± 0.22 mm in A. platensis). The cytotoxic and antioxidant activities of the lipid complexes of microalgae C. vulgaris and A. platensis were established and their physicochemical properties and fatty acid composition were studied. The results demonstrated that the lipid-pigment complex under experimental conditions was the most effective against P. pentosaceus among Gram-positive bacteria. Antimicrobial activity is directly related to the concentration of the lipid-pigment complex. The presence of antibacterial activity in microalgae lipid-pigment complexes opens the door to the development of alternative natural preparations for the prevention of microbial contamination of feed. Because of their biological activity, Baltic Sea microalgae can be used as an alternative to banned antibiotics in a variety of fields, including agriculture, medicine, cosmetology, and food preservation.


Assuntos
Chlorella vulgaris , Microalgas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biomassa , Escherichia coli , Ácidos Graxos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Água
5.
Life (Basel) ; 12(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36143431

RESUMO

Biologically active substances from microalgae can exhibit antioxidant, immunostimulating, antibacterial, antiviral, antitumor, antihypertensive, regenerative, and neuroprotective effects. Lipid complexes of microalgae Chlorella vulgaris and Arthrospira platensis exhibit antibacterial activity and inhibit the growth of the Gram-positive strain Bacillus subtilis; the maximum zone of inhibition is 0.7 ± 0.03 cm at all concentrations. The carbohydrate-containing complex of C. vulgaris exhibits antibacterial activity, inhibits the growth of the Gram-positive strain B. subtilis, Bacillus pumilus; the maximum zone of inhibition is 3.5 ± 0.17 cm at all concentrations considered. The carbohydrate complex of A. platensis has antimicrobial activity against the Gram-negative strain of Escherichia coli at all concentrations, and the zone of inhibition is 2.0-3.0 cm. The presence of mythelenic, carbonyl groups, ester bonds between fatty acids and glycerol in lipid molecules, the stretching vibration of the phosphate group PO2, neutral lipids, glyco- and phospholipids, and unsaturated fatty acids, such as γ-linolenic, was revealed using FTIR spectra. Spectral peaks characteristic of saccharides were found, and there were cellulose and starch absorption bands, pyranose rings, and phenolic compounds. Both algae in this study had phenolic and alcohol components, which had high antibacterial activity. Microalgae can be used as biologically active food additives and/or as an alternative to antibiotic feed in animal husbandry due to their antibacterial properties.

6.
Biomedicines ; 10(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009384

RESUMO

The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that participates in integrin-mediated signal transduction and contributes to different biological processes, such as cell migration, survival, proliferation and angiogenesis. Moreover, FAK can be activated by autophosphorylation at position Y397 and trigger different signaling pathways in response to increased extracellular matrix stiffness. In addition, FAK is overexpressed and/or hyperactivated in many epithelial cancers, and its expression correlates with tumor malignancy and invasion potential. One of the characteristics of solid tumors is an over deposition of ECM components, which generates a stiff microenvironment that promotes, among other features, sustained cell proliferation and survival. Researchers are, therefore, increasingly developing cell culture models to mimic the increased stiffness associated with these kinds of tumors. In the present work, we have developed a new 3D in vitro model to study the effect of matrix stiffness in pancreatic ductal adenocarcinoma (PDAC) cells as this kind of tumor is characterized by a desmoplastic stroma and an increased stiffness compared to its normal counterpart. For that, we have used a synthetic self-assembling peptide nanofiber matrix, RAD16-I, which does not suffer a significant degradation in vitro, thus allowing to maintain the same local stiffness along culture time. We show that increased matrix stiffness in synthetic 3D RAD16-I gels, but not in collagen type I scaffolds, promotes FAK downregulation at a protein level in all the cell lines analyzed. Moreover, even though it has classically been described that stiff 3D matrices promote an increase in pFAKY397/FAK proteins, we found that this ratio in soft and stiff RAD16-I gels is cell-type-dependent. This study highlights how cell response to increased matrix stiffness greatly depends on the nature of the matrix used for 3D culture.

7.
Foods ; 11(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35681404

RESUMO

Methods for purifying, detecting, and characterizing protein concentrate, carbohydrates, lipids, and neutral fats from the microalgae were developed as a result of research. Microalgae were collected from natural sources (water, sand, soil of the Kaliningrad region, Russia). Microalgae were identified based on morphology and polymerase chain reaction as Chlorella vulgaris Beijer, Arthrospira platensis Gomont, Arthrospira platensis (Nordst.) Geitl., and Dunaliella salina Teod. The protein content in all microalgae samples was determined using a spectrophotometer. The extracts were dried by spray freeze drying. Pressure acid hydrolysis with 1% sulfuric acid was determined to be the most effective method for extracting carbohydrates from microalgae biomass samples. The highest yield of carbohydrates (more than 56%) was obtained from A. platensis samples. The addition of carbohydrates to the cultivation medium increased the accumulation of fatty acids in microalgae, especially in Chlorella. When carbohydrates were introduced to nutrient media, neutral lipids increased by 10.9%, triacylglycerides by 10.9%, fatty acids by 13.9%, polar lipids by 3.1%, unsaponifiable substances by 13.1%, chlorophyllides by 12.1%, other impurities by 8.9% on average for all microalgae. It was demonstrated that on average the content of myristic acid increased by 10.8%, palmitic acid by 10.4%, oleic acid by 10.0%, stearic acid by 10.1%, and linoleic acid by 5.7% in all microalgae samples with the addition of carbohydrates to nutrient media. It was established that microalgae samples contained valuable components (proteins, carbohydrates, lipids, fatty acids, minerals). Thereby the study of the composition of lipids and fatty acids in microalgae, as well as the influence of carbohydrates in the nutrient medium on lipid accumulation, is a promising direction for scientific research in the fields of physiology, biochemistry, biophysics, genetics, space biology and feed additive production.

8.
Front Cell Neurosci ; 16: 859882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602553

RESUMO

The loss of inner ear hair cells causes permanent hearing and balance deficits in humans and other mammals, but non-mammals recover after supporting cells (SCs) divide and replace hair cells. The proliferative capacity of mammalian SCs declines as exceptionally thick circumferential F-actin bands develop at their adherens junctions. We hypothesized that the reinforced junctions were limiting regenerative responses of mammalian SCs by impeding changes in cell shape and epithelial tension. Using micropipette aspiration and atomic force microscopy, we measured mechanical properties of utricles from mice and chickens. Our data show that the epithelial surface of the mouse utricle stiffens significantly during postnatal maturation. This stiffening correlates with and is dependent on the postnatal accumulation of F-actin and the cross-linker Alpha-Actinin-4 at SC-SC junctions. In chicken utricles, where SCs lack junctional reinforcement, the epithelial surface remains compliant. There, SCs undergo oriented cell divisions and their apical surfaces progressively elongate throughout development, consistent with anisotropic intraepithelial tension. In chicken utricles, inhibition of actomyosin contractility led to drastic SC shape change and epithelial buckling, but neither occurred in mouse utricles. These findings suggest that species differences in the capacity for hair cell regeneration may be attributable in part to the differences in the stiffness and contractility of the actin cytoskeletal elements that reinforce adherens junctions and participate in regulation of the cell cycle.

9.
Cancers (Basel) ; 13(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34572731

RESUMO

The epithelial growth factor receptor (EGFR) is a tyrosine kinase receptor that participates in many biological processes such as cell proliferation. In addition, EGFR is overexpressed in many epithelial cancers and therefore is a target for cancer therapy. Moreover, EGFR responds to lots of stimuli by internalizing into endosomes from where it can be recycled to the membrane or further sorted into lysosomes where it undergoes degradation. Two-dimensional cell cultures have been classically used to study EGFR trafficking mechanisms in cancer cells. However, it has been widely demonstrated that in 2D cultures cells are exposed to a non-physiological environment as compared to 3D cultures that provide the normal cellular conformation, matrix dimensionality and stiffness, as well as molecular gradients. Therefore, the microenvironment of solid tumors is better recreated in 3D culture models, and this is why they are becoming a more physiological alternative to study cancer physiology. Here, we develop a new model of EGFR internalization and degradation upon erlotinib treatment in pancreatic ductal adenocarcinoma (PDAC) cells cultured in a 3D self-assembling peptide scaffold. In this work, we show that treatment with the tyrosine kinase inhibitor erlotinib promotes EGFR degradation in 3D cultures of PDAC cell lines but not in 2D cultures. We also show that this receptor degradation does not occur in normal fibroblast cells, regardless of culture dimensionality. In conclusion, we demonstrate not only that erlotinib has a distinct effect on tumor and normal cells but also that pancreatic ductal adenocarcinoma cells respond differently to drug treatment when cultured in a 3D microenvironment. This study highlights the importance of culture systems that can more accurately mimic the in vivo tumor physiology.

10.
Mar Drugs ; 19(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356806

RESUMO

Our study focused on investigating the possibilities of controlling the accumulation of carbohydrates in certain microalgae species (Arthrospira platensis Gomont, Chlorella vulgaris Beijer, and Dunaliella salina Teod) to determine their potential in biofuel production (biohydrogen). It was found that after the introduction of carbohydrates (0.05 g⋅L-1) into the nutrient medium, the growth rate of the microalgae biomass increased, and the accumulation of carbohydrates reached 41.1%, 47.9%, and 31.7% for Arthrospira platensis, Chlorella vulgaris, and Dunaliella salina, respectively. Chlorella vulgaris had the highest total carbohydrate content (a mixture of glucose, fructose, sucrose, and maltose, 16.97%) among the studied microalgae, while for Arthrospira platensis and Dunaliella salina, the accumulation of total carbohydrates was 9.59% and 8.68%, respectively. Thus, the introduction of carbohydrates into the nutrient medium can stimulate their accumulation in the microalgae biomass, an application of biofuel production (biohydrogen).


Assuntos
Carboidratos/farmacologia , Microalgas/crescimento & desenvolvimento , Organismos Aquáticos , Biocombustíveis , Biomassa , Carboidratos/química , Microalgas/química
11.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066679

RESUMO

Microalgae are known to be rich in protein. In this study, we aim to investigate methods of producing and purifying proteins of 98 microalgae including Chlorella vulgaris, Arthrospira platensis, Nostoc sp., Dunaliella salina, and Pleurochrysis carterae (Baltic Sea). Therefore, we studied their amino acid composition and developed a two-stage protein concentrate purification method from the microalgae biomass. After an additional stage of purification, the mass fraction of protein substances with a molecular weight greater than 50 kDa in the protein concentrate isolated from the biomass of the microalga Dunaliella salina increased by 2.58 times as compared with the mass fraction before filtration. In the protein concentrate isolated from the biomass of the microalga Pleurochrysis cartera, the relative content of the fraction with a molecular weight greater than 50.0 kDa reached 82.4%, which was 2.43 times higher than the relative content of the same fractions in the protein concentrate isolated from this culture before the two-stage purification. The possibilities of large-scale industrial production of microalgae biomass and an expanded range of uses determine the need to search for highly productive protein strains of microalgae and to optimize the conditions for isolating amino acids from them.


Assuntos
Proteínas de Algas/química , Aminoácidos/química , Aminoácidos/isolamento & purificação , Chlorella vulgaris/química , Haptófitas/química , Microalgas/química , Nostoc/química , Spirulina/química , Biomassa , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Ultrafiltração
12.
Biomolecules ; 11(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669066

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Sindecanas/metabolismo , Animais , Matriz Extracelular/metabolismo , Humanos , Proteoglicanas/metabolismo , Transdução de Sinais/fisiologia
13.
Biomolecules ; 10(11)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227978

RESUMO

Microalgae are rich in nutrients and biologically active substances such as proteins, carbohydrates, lipids, vitamins, pigments, phycobiliproteins, among others. The lipid composition of the microalgae Chlorella vulgaris, Arthrospira platensis, and Dunaliella salina was screened for the first time. The proposed method for purifying the lipid complex isolated from microalgae's biomass involved dissolving the lipid-pigment complex in n-hexane for 4 h and stirring at 500 rpm. We found that the largest number of neutral lipids is contained in the biomass of microalgae Arthrospira platensis, fatty acids, polar lipids (glycerophospholipids), and unsaponifiable substances-in the biomass of microalgae Dunaliella salina, chlorophyll, and other impurities-in the biomass of microalgae Chlorella vulgaris. The developed method of purification of the fatty acid composition of the microalgae lipid complex confirmed the content of fatty acids in microalgae, which are of interest for practical use in the production of biologically active components. We also determined the potential of its use in the development of affordable technology for processing microalgae into valuable food and feed additives.


Assuntos
Ácidos Graxos/análise , Gotículas Lipídicas/química , Metabolismo dos Lipídeos/fisiologia , Microalgas/química , Biomassa , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Lipídeos/análise , Microalgas/metabolismo
14.
J Neurosci ; 40(20): 3915-3932, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32341094

RESUMO

Loss of sensory hair cells causes permanent hearing and balance deficits in humans and other mammals, but for nonmammals such deficits are temporary. Nonmammals recover hearing and balance sensitivity after supporting cells proliferate and differentiate into replacement hair cells. Evidence of mechanical differences between those sensory epithelia and their supporting cells prompted us to investigate whether the capacity to activate YAP, an effector in the mechanosensitive Hippo pathway, correlates with regenerative capacity in acceleration-sensing utricles of chickens and mice of both sexes. After hair cell ablation, YAP accumulated in supporting cell nuclei in chicken utricles and promoted regenerative proliferation, but YAP remained cytoplasmic and little proliferation occurred in mouse utricles. YAP localization in supporting cells was also more sensitive to shape change and inhibition of MST1/2 in chicken utricles than in mouse utricles. Genetic manipulations showed that in vivo expression of the YAP-S127A variant caused robust proliferation of neonatal mouse supporting cells, which produced progeny that expressed hair cell markers, but proliferative responses declined postnatally. Expression of YAP-5SA, which more effectively evades inhibitory phosphorylation, resulted in TEAD-dependent proliferation of striolar supporting cells, even in adult utricles. Conditional deletion of LATS1/2 kinases abolished the inhibitory phosphorylation of endogenous YAP and led to striolar proliferation in adult mouse utricles. The findings suggest that damage overcomes inhibitory Hippo signaling and facilitates regenerative proliferation in nonmammalian utricles, whereas constitutive LATS1/2 kinase activity suppresses YAP-TEAD signaling in mammalian utricles and contributes to maintaining the proliferative quiescence that appears to underlie the permanence of sensory deficits.SIGNIFICANCE STATEMENT Loud sounds, ototoxic drugs, infections, and aging kill sensory hair cells in the ear, causing irreversible hearing loss and balance deficits for millions. In nonmammals, damage evokes shape changes in supporting cells, which can divide and regenerate hair cells. Such shape changes are limited in mammalian ears, where supporting cells develop E-cadherin-rich apical junctions reinforced by robust F-actin bands, and the cells fail to divide. Here, we find that damage readily activates YAP in supporting cells within balance epithelia of chickens, but not mice. Deleting LATS kinases or expressing YAP variants that evade LATS-mediated inhibitory phosphorylation induces proliferation in supporting cells of adult mice. YAP signaling eventually may be harnessed to overcome proliferative quiescence that limits regeneration in mammalian ears.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Células Ciliadas Auditivas/fisiologia , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular/genética , Proliferação de Células , Embrião de Galinha , Galinhas , Deleção de Genes , Variação Genética , Perda Auditiva/genética , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Estimulador Tireóideo de Ação Prolongada , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sáculo e Utrículo/efeitos dos fármacos , Serina-Treonina Quinase 3 , Especificidade da Espécie , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
15.
Curr Pharm Des ; 26(18): 2109-2115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32250213

RESUMO

Discovery and selection of the potential targets are some of the important issues in pharmacology. Even when all the reactions and the proteins in a biological network are known, how does one choose the optimal target? Here, we review and discuss the application of the computational methods to address this problem using the blood coagulation cascade as an example. The problem of correct antithrombotic targeting is critical for this system because, although several anticoagulants are currently available, all of them are associated with bleeding risks. The advantages and the drawbacks of different sensitivity analysis strategies are considered, focusing on the approaches that emphasize: 1) the functional modularity and the multi-tasking nature of this biological network; and 2) the need to normalize hemostasis during the anticoagulation therapy rather than completely suppress it. To illustrate this effect, we show the possibility of the differential regulation of lag time and endogenous thrombin potential in the thrombin generation. These methods allow to identify the elements in the blood coagulation cascade that may serve as the targets for the differential regulation of this system.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea , Biologia de Sistemas , Coagulação Sanguínea/efeitos dos fármacos , Testes de Coagulação Sanguínea , Trombina/farmacologia
16.
J Biol Chem ; 294(49): 18863-18872, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653696

RESUMO

Loss-of-function mutations in the gene encoding human protein DJ-1 cause early onset of Parkinson's disease, suggesting that DJ-1 protects dopaminergic neurons. The molecular mechanisms underlying this neuroprotection are unclear; however, DJ-1 has been suggested to be a GSH-independent glyoxalase that detoxifies methylglyoxal (MGO) by converting it into lactate. It has also been suggested that DJ-1 serves as a deglycase that catalyzes hydrolysis of hemithioacetals and hemiaminals formed by reactions of MGO with the thiol and amino groups of proteins. In this report, we demonstrate that the equilibrium constant of reaction of MGO with thiols is ∼500 m-1 at 37 °C and that the half-life of the resulting hemithioacetal is only 12 s. These thermodynamic parameters would dictate that a significant fraction of free MGO will be present in a fast equilibrium with hemithioacetals in solution. We found that removal of free MGO by DJ-1's glyoxalase activity forces immediate spontaneous decomposition of hemithioacetals due to the shift in equilibrium position. This spontaneous decomposition of hemithioacetals could be mistaken for deglycase activity of DJ-1. Furthermore, we demonstrate that higher initial concentrations of hemithioacetals are associated with lower rates of DJ-1-mediated conversion of MGO, ruling out the possibility that hemithioacetals are DJ-1 substrates. Experiments with CRISPR/Cas-generated DJ-1-knockout HEK293 cells revealed that DJ-1 does not protect against acute MGO toxicity or carboxymethylation of lysine residues in cells. Combined, our results suggest that DJ-1 does not possess protein deglycase activity.


Assuntos
Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Humanos , Aldeído Pirúvico/metabolismo , Soroalbumina Bovina/metabolismo
17.
J Mol Recognit ; 29(6): 242-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26669798

RESUMO

Telomerase is a key component of the telomere length maintenance system in the majority of eukaryotes. Telomerase displays maximal activity in stem and cancer cells with high proliferative potential. In humans, telomerase activity is regulated by various mechanisms, including the interaction with telomere ssDNA overhangs that contain a repetitive G-rich sequence, and with noncoding RNA, Telomeric repeat-containing RNA (TERRA), that contains the same sequence. So these nucleic acids can compete for telomerase RNA templates in the cell. In this study, we have investigated the ability of different model substrates mimicking telomere DNA overhangs and TERRA RNA to compete for telomerase in vitro through a previously developed telomerase inhibitor assay. We have shown in this study that RNA oligonucleotides are better competitors for telomerase that DNA ones as RNA also use an alternative binding site on telomerase, and the presence of 2'-OH groups is significant in these interactions. In contrast to DNA, the possibility of forming intramolecular G-quadruplex structures has a minor effect for RNA binding to telomerase. Taking together our data, we propose that TERRA RNA binds better to telomerase compared with its native substrate - the 3'-end of telomere DNA overhang. As a result, some specific factor may exist that participates in switching telomerase from TERRA to the 3'-end of DNA for telomere elongation at the distinct period of a cell cycle in vivo. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Telomerase/química , Telomerase/metabolismo , Sítios de Ligação , Dicroísmo Circular , DNA de Cadeia Simples/química , Quadruplex G , Humanos , Técnicas In Vitro , Ligação Proteica , RNA Longo não Codificante/química
19.
Dynamis ; 34(2): 357-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25481967

RESUMO

This paper focuses on childbirth in Japan's aristocratic households during the Heian period (794-1185). Drawing on various sources, including court diaries, visual sources, literary records, and Japan's first medical collection, with its assortment of gynaecological and obstetric prescriptions, as well as Buddhist and other ritual texts, this short excursion into the cultural history of childbirth offers an insight into how childbirth was experienced and managed in Heian Japan. In particular, it addresses the variety of ideas, knowledge systems and professionals involved in framing and supporting the process of childbirth in elite households. In so doing, it casts light on the complex background of early Japanese medicine and healthcare for women.


Assuntos
Parto Obstétrico/história , Parto , Saúde da Mulher/história , Feminino , História Medieval , Humanos , Japão , Gravidez , Classe Social
20.
Dev Cell ; 29(1): 20-33, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24703874

RESUMO

Actomyosin contractility plays a key role in tissue morphogenesis. During mammalian development, PTK7 regulates epithelial morphogenesis and planar cell polarity (PCP) through modulation of actomyosin contractility, but the underlying mechanism is unknown. Here, we show that PTK7 interacts with the tyrosine kinase Src and stimulates Src signaling along cell-cell contacts. We further identify ROCK2 as a target of junctional PTK7-Src signaling. PTK7 knockdown in cultured epithelial cells reduced the level of active Src at cell-cell contacts, resulting in delocalization of ROCK2 from cell-cell contacts and decreased junctional contractility, with a concomitant increase in actomyosin on the basal surface. Moreover, we present in vivo evidence that Src family kinase (SFK) activity is critical for PCP regulation in the auditory sensory epithelium and that PTK7-SFK signaling regulates tyrosine phosphorylation of junctional ROCK2. Together, these results delineate a PTK7-Src signaling module for spatial regulation of ROCK activity, actomyosin contractility, and epithelial PCP.


Assuntos
Actomiosina/metabolismo , Polaridade Celular , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Cóclea/citologia , Cóclea/metabolismo , Cães , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Madin Darby de Rim Canino , Camundongos , Fosforilação , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA