Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 18: 1518-1523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447519

RESUMO

The synthesis of phosphonate esters is a topic of interest for various fields, including the preparation of phosphonic acids to be employed as organic linkers for the construction of metal phosphonate materials. We report an alternative method that requires no solvent and involves a different order of addition of reactants to perform the transition-metal-catalyzed C-P cross-coupling reaction, often referred to as the Tavs reaction, employing NiCl2 as a pre-catalyst in the phosphonylation of aryl bromide substrates using triisopropyl phosphite. This new method was employed in the synthesis of three novel aryl diphosphonate esters which were subsequently transformed to phosphonic acids through silylation and hydrolysis.

2.
Chemistry ; 27(21): 6579-6592, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33480453

RESUMO

We report on the results of an in situ synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated CeIV -based metal-organic frameworks (MOFs), analogues of the already well investigated ZrIV -based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as reagents, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds, varying parameters such as temperature, amount of the protonation modulator nitric acid and amount of the coordination modulator acetic acid. When only HNO3 is present in the reaction environment, only F4_MIL-140A(Ce) is obtained. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C. Upon addition of AcOH to the system, alongside HNO3 , mixed-phased products are obtained. F4_UiO-66(Ce) is always formed faster, and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate-determining step. A higher amount of HNO3 favours the formation of F4_MIL-140A(Ce), whereas increasing the amount of AcOH favours the formation of F4_UiO-66(Ce). Based on the in situ results, a new optimised route to achieving a pure, high-quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.

3.
Dalton Trans ; 48(10): 3349-3359, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30778497

RESUMO

Zirconium-based metal-organic frameworks (Zr-MOFs) are a subclass of MOFs known for their remarkable stability, especially in the presence of water. This makes them extremely attractive for practical applications, including CO2 capture from industrial emission sources; however, the CO2 adsorption capacity of Zr-MOFs is moderate compared to that of the best performing MOFs reported to date. Functionalization of Zr-MOFs with amino groups has been demonstrated to increase their affinity for CO2. In this work, we assessed the potential of post-synthetic defect exchange (PSDE) as an alternative approach to introduce amino functionalities at missing-cluster defective sites in formic acid modulated UiO-66. Both pyridine-containing (picolinic acid and nicotinic acid) and aniline-containing (3-aminobenzoic acid and anthranilic acid) monocarboxylates were integrated within defective UiO-66 with this method. Non-defective UiO-66 modified with linkers bearing the same amino groups (2,5-pyridinedicarboxylic acid and 2-aminoterephthalic acid) were prepared by classical post-synthetic ligand exchange (PSE), in order to compare the effect of introducing functionalities at defective sites versus installing them on the backbone. PSDE reduces the porosity of defective UiO-66, but improves both the CO2 uptake and the CO2/N2 selectivity, whereas PSE has no effect on the porosity of non-defective UiO-66, improving the CO2 uptake but leaving selectivity unchanged. Modification of defective UiO-66 with benzoic acid reveals that pore size reduction is the main factor responsible for the observed uptake improvement, whereas the presence of nitrogen atoms in the pores seems to be beneficial for increasing selectivity.

4.
Angew Chem Int Ed Engl ; 57(36): 11706-11710, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29989290

RESUMO

Post-synthetic ligand exchange in the prototypical zirconium-based metal-organic framework (MOF) UiO-66 was investigated by in situ solution 1 H NMR spectroscopy. Samples of UiO-66 having different degrees of defectivity were exchanged using solutions of several terephthalic acid analogues in a range of conditions. Linker exchange only occurred in defect-free UiO-66, whereas monocarboxylates grafted at defect sites were found to be preferentially exchanged with respect to terephthalic acid over the whole range of conditions investigated. A 1:1 exchange ratio between the terephthalic acid analogue and modulator was observed, providing evidence that the defects had missing-cluster nature. Ex situ characterisation of the MOF powders after exchange corroborated these findings and showed that the physical-chemical properties of the MOF depend on whether the functionalisation occurs at defective sites or on the framework.

5.
Sci Rep ; 7(1): 6682, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751753

RESUMO

Although clean and abundant water is the keystone of thriving communities, increasing demand and volatile climate patterns are depleting rivers and aquifers. Moreover, the quality of such water sources is threatened by noxious contaminants, of which heavy metals represents an area of growing concern. Recently, graphene oxide (GO) has been suggested as an adsorbent; however, a support is desirable to ensure a high surface area and an immobile phase. Herein, we described the preparation and characterization of a supported-epoxidized carbon nanotube (SENT) via the growth of multi walled carbon nanotubes (MWNTs) onto a quartz substrate. Subsequent epoxidation provides sufficient functionality to enable adsorbent of heavy metals (Cd2+, Co2+, Cu2+, Hg2+, Ni2+, and Pb2+) from aqueous solution with initial concentrations (60-6000 ppm) chosen to simulate high industrial wastewater contamination. The SENT adsorption efficiency is >99.4% for all metals and the saturation concentration is significantly greater than observed for either GO or acid treated MWNTs. The SENT adsorbent may be readily regenerated under mild conditions using a globally available household chemical, vinegar. 1 g of SENT has the potential to treat 83,000 L of contaminated water down to WHO limits which would be sufficient for 11,000 people.

6.
Chemosphere ; 168: 1317-1323, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27919539

RESUMO

The present work represents a new approach for the isolation of uniform nano particulate hydroxyapatite (HAp). The chemical characterization of a calcium phosphate product obtained from industrial trout farm aquaculture wastewater by two different routes, washing either with a basic aqueous medium (washNaOH) or followed by a further washing with ethanol (washEtOH), is explored. Characterization of the isolated materials includes morphology studies (SEM and TEM), structural (XRD, electron diffraction), compositional (EDX) and thermogravimetric analysis (TGA). The obtained products are a mixture of different compounds, with hydroxyapatite the predominant phase. The morphology is unusually nanometric size with fusiform shaped particles, such characteristics are ordinarily only obtained by synthetic routes. This process of phosphate precipitation represents a unique self-sufficient process to be compared to conventional chemical or biological practices for precipitating phosphate.


Assuntos
Aquicultura , Durapatita/química , Nanoestruturas/química , Águas Residuárias/química , Precipitação Química , Difração de Raios X
7.
ChemSusChem ; 8(16): 2572, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26259624

RESUMO

Invited for this month's cover are Dr. Enrico Andreoli and Prof. Andrew R. Barron from the Energy Safety Research Institute (ESRI) of Swansea University. The image shows how fullerene C60 can activate amine-rich polymers toward CO2 capture for clean energy production. The Full Paper itself is available at 10.1002/cssc.201500605.


Assuntos
Dióxido de Carbono/química , Dendrímeros/química , Fulerenos/química , Polipropilenos/química , Aminas/química , Sequestro de Carbono
8.
ChemSusChem ; 8(16): 2635-44, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26223905

RESUMO

Converting amine-rich compounds into highly effective carbon dioxide (CO2 ) sorbents requires a better understanding and control of their properties. The reaction of fullerene C60 with polyethyleneimine converts the polymer into a high-performance CO2 sorbent. In this study, experimental evidence is reported for the activation effect of C60 on the amine moieties of the polymer. To do so, polypropylenimine (PPI) dendrimers that allowed for a systematic comparison of molecular composition and CO2 absorption were used. The addition of C60 to PPI to form PPI-C60 results in a reduction of the energy barrier of CO2 absorption, but also in a parallel decrease in the frequency of successful collisions between CO2 and PPI-C60 due to a possible disruption of the hydrogen-bonding network of amino groups and bound water in PPI. This finding supports the existence of a non-affinity "repulsive" effect between hydrophobic C60 and hydrophilic amines that forces them to be actively exposed to CO2.


Assuntos
Dióxido de Carbono/química , Dendrímeros/química , Fulerenos/química , Polipropilenos/química , Aminas/química , Sequestro de Carbono , Interações Hidrofóbicas e Hidrofílicas
9.
Sci Rep ; 4: 7304, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467054

RESUMO

Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C(60)) as a cross-linker. PEI-C(60) (CO2 absorption of 0.14 g/g at 0.1 bar/90 °C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90 °C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C(60) can perform better than MOFs in the sweetening of natural gas.

10.
J Mater Chem B ; 2(29): 4740-4747, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262286

RESUMO

High quality single-walled carbon nanotubes (SWNTs) were obtained following a new purification procedure, based on using Cl2 gas at high temperature. Cl2-treated SWNTs were fluorinated and modified with branched polyethyleneimine (PEI) to afford covalently functionalised PEI-SWNTs, which were then tested for cytotoxicity both in vitro (HPNE and BxPC3 pancreatic cell lines) and in vivo (BxPC3 xenografts from nude mice) to establish that functionalization with lower molecular weight PEI (600 and 1800 Da) achieved higher cell viability in MTT assay. A shortened version of the nanotubes, PEI(1800)-cut-SWNT (1800 Da branched PEI), was also prepared and tested for cellular internalization in the BxPC3 adenocarcinoma cell line. Laser confocal imaging of the cells after incubation in the presence of RhoB-PEI(1800)-cut-SWNT (covalently labelled with rhodamine B) indicates that the PEI(1800)-cut-SWNTs can reach both the cytoplasm and nucleus of pancreatic cancer cells.

11.
J Nanosci Nanotechnol ; 12(1): 338-49, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22523984

RESUMO

Nanothin sheets made of zinc sulfate hydroxide hydrate, ZnSO4[Zn(OH)2]3 x 5H2O, are easily and quickly prepared using an innovative electrochemical route onto polypyrrole-polystyrene sulfonate (PPy-PSS) films. The sheets are characterized using a range of experimental techniques. The deposits are formed on the film surface with instantaneous nucleation to grow into a network of entangled nanosheets. The effect of the experimental conditions on the deposition is reported. Interestingly, the formation of the nanosheets is observed on PPy-PSS films only, and not on films doped with other sulfate/sulfonate dopants. The zinc nanosheets can be easily electrochemically reduced to metallic zinc microdentrites.


Assuntos
Cristalização/métodos , Galvanoplastia/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Pirróis/química , Zinco/química , Dendrímeros/química , Taninos Hidrolisáveis , Teste de Materiais , Oxirredução , Tamanho da Partícula , Sulfatos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA