Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Pharm ; 21(9): 4450-4464, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39163171

RESUMO

Microneedle (MN) patches are gaining increasing attention as a cost-effective technology for delivering drugs directly into the skin. In the present study, two different 3D printing processes were utilized to produce coated MNs, namely, digital light processing (DLP) and semisolid extrusion (SSE). Donepezil (DN), a cholinesterase inhibitor administered for the treatment of Alzheimer's disease, was incorporated into the coating material. Physiochemical characterization of the coated MNs confirmed the successful incorporation of donepezil as well as the stability and suitability of the materials for transdermal delivery. Optical microscopy and SEM studies validated the uniform weight distribution and precise dimensions of the MN arrays, while mechanical testing ensured the MNs' robustness, ensuring efficient skin penetration. In vitro studies were conducted to evaluate the produced transdermal patches, indicating their potential use in clinical treatment. Permeation studies revealed a significant increase in DN permeation compared to plain coating material, affirming the effectiveness of the MNs in enhancing transdermal drug delivery. Confocal laser scanning microscopy (CLSM) elucidated the distribution of the API, within skin layers, demonstrating sustained drug release and transcellular transport pathways. Finally, cell studies were also conducted on NIH3T3 fibroblasts to evaluate the biocompatibility and safety of the printed objects for transdermal applications.


Assuntos
Administração Cutânea , Doença de Alzheimer , Inibidores da Colinesterase , Donepezila , Sistemas de Liberação de Medicamentos , Agulhas , Impressão Tridimensional , Donepezila/administração & dosagem , Donepezila/química , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Células NIH 3T3 , Sistemas de Liberação de Medicamentos/métodos , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/química , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Liberação Controlada de Fármacos , Adesivo Transdérmico , Humanos
2.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930850

RESUMO

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a crucial tumor suppressor protein with frequent mutations and alterations. Although protein therapeutics are already integral to numerous medical fields, their potential remains nascent. This study aimed to investigate the impact of stable, unphosphorylated recombinant human full-length PTEN and its truncated variants, regarding their tumor suppression activity with multiwalled-carbon nanotubes (MW-CNTs) as vehicles for their delivery in breast cancer cells (T-47D, ZR-75-1, and MCF-7). The cloning, overexpression, and purification of PTEN variants were achieved from E. coli, followed by successful binding to CNTs. Cell incubation with protein-functionalized CNTs revealed that the full-length PTEN-CNTs significantly inhibited cancer cell growth and stimulated apoptosis in ZR-75-1 and MCF-7 cells, while truncated PTEN fragments on CNTs had a lesser effect. The N-terminal fragment, despite possessing the active site, did not have the same effect as the full length PTEN, emphasizing the necessity of interaction with the C2 domain in the C-terminal tail. Our findings highlight the efficacy of full-length PTEN in inhibiting cancer growth and inducing apoptosis through the alteration of the expression levels of key apoptotic markers. In addition, the utilization of carbon nanotubes as a potent PTEN protein delivery system provides valuable insights for future applications in in vivo models and clinical studies.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Nanotubos de Carbono , PTEN Fosfo-Hidrolase , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Nanotubos de Carbono/química , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
ACS Appl Bio Mater ; 7(5): 2710-2724, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38591866

RESUMO

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.


Assuntos
Acetilcisteína , Materiais Biocompatíveis , Teste de Materiais , Nanopartículas , Agulhas , Tamanho da Partícula , Impressão Tridimensional , Rivastigmina , Acetilcisteína/química , Acetilcisteína/farmacologia , Rivastigmina/química , Rivastigmina/farmacologia , Rivastigmina/administração & dosagem , Humanos , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Pele/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos
4.
ACS Biomater Sci Eng ; 9(8): 5072-5083, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37528336

RESUMO

In the present study, two different microneedle devices were produced using digital light processing (DLP). These devices hold promise as drug delivery systems to the buccal tissue as they increase the permeability of actives with molecular weights between 600 and 4000 Da. The attached reservoirs were designed and printed along with the arrays as a whole device. Light microscopy was used to quality control the printability of the designs, confirming that the actual dimensions are in agreement with the digital design. Non-destructive volume imaging by means of microfocus computed tomography was employed for dimensional and defect characterization of the DLP-printed devices, demonstrating the actual volumes of the reservoirs and the malformations that occurred during printing. The penetration test and finite element analysis showed that the maximum stress experienced by the needles during the insertion process (10 N) was below their ultimate compressive strength (240-310 N). Permeation studies showed the increased permeability of three model drugs when delivered with the MN devices. Size-exclusion chromatography validated the stability of all the actives throughout the permeability tests. The safety of these printed devices for buccal administration was confirmed by histological evaluation and cell viability studies using the TR146 cell line, which indicated no toxic effects.


Assuntos
Impressão Tridimensional , Luz , Agulhas , Humanos , Linhagem Celular , Sobrevivência Celular
5.
Gels ; 8(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36354613

RESUMO

Medium Chain Triglyceride (MCT) oil was successfully combined with Glyceryl Monostearate (GMS) and Glyceryl Monoolein (GMO) to form oleogels that were subsequently whipped to form stable oleofoams. The co-crystallization of GMS and GMO at a ratio of 20:1, 20:2.5, and 20:5 within MCT oil was studied through Differential Scanning Calorimetry (DSC), X-ray Diffraction analysis (XRD), rheological analysis, Fluorescence Recovery after Photobleaching (FRAP), Fourier Transform Infrared Spectroscopy (FTIR), and polarized microscopy. The addition of 5% GMO resulted in the production of more stable oleogels in terms of crystal structure and higher peak melting point, rendering this formulation suitable for pharmaceutical applications that are intended to be used internally and those that require stability at temperatures close to 40 °C. All formulations were whipped to form oleofoams that were evaluated for their storage stability for prolonged period at different temperatures. The results show that oleofoams containing 5% MGO retained their foam characteristics even after 3 months of storage under different temperature conditions.

6.
Micromachines (Basel) ; 13(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014241

RESUMO

The current study describes the design of a cost-effective drug delivery apparatus that can be manufactured, assembled, and utilized as easily and quickly as possible, minimizing the time and expense of the supply chain. This apparatus could become a realistic alternative method of providing a vaccine or drug in harsh circumstances, including humanitarian disasters or a lack of medical and nursing staff, conditions that are frequently observed in developing countries. Simultaneously, with the use of microneedles (MNs), the apparatus can benefit from the numerous advantages offered by them during administration. The hollow microneedles in particular are internally perforated and are capable of delivering the active substance to the skin. The apparatus was designed with appropriate details in computer aided design software, and various 3D printing technologies were utilized in order to fabricate the prototype. The parts that required minimum accuracy, such as the main body of the apparatus, were fabricated with fused filament fabrication. The internal parts and the hollow microneedles were fabricated with liquid crystal display, and the substance for the drug loading carrier, which was an alginate gel cylinder, was fabricated with semi-solid extrusion 3D printing.

7.
Pharmaceutics ; 14(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36015263

RESUMO

In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.

8.
Mol Pharm ; 18(12): 4393-4414, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34699238

RESUMO

This article takes a step forward in understanding the mechanisms involved during the preparation and performance of cross-linked high-drug-loading (HDL) amorphous solid dispersions (ASDs). Specifically, ASDs, having 90 wt % poorly water-soluble drug indomethacin (IND), were prepared via in situ thermal cross-linking of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) and thoroughly evaluated in terms of physical stability and in vitro supersaturation. Results showed that HDL ASDs having excellent active pharmaceutical ingredient (API) amorphous stability and prolonged in vitro supersaturation were prepared by fine tuning the cross-linking procedure. Unraveling of the processes involved during ASD's formation shed light on the significant role of the cross-linking conditions (i.e., temperature and time), the physicochemical properties of the API, and the hydrolysis level of the cross-linker as key factors in modulating ASD's stability. In-depth analysis of the prepared systems revealed the (1) reduction of API's molecular motions within the cross-linked polymeric networks (through API's strong spatial confinement), (2) the structural changes in the prepared cross-linked matrices (induced by the high API drug loading), and (3) the tuning of the cross-linking density via utilization of low-hydrolyzed PVA as the major mechanisms responsible for ASD's exceptional performance. Complementary analysis by means of molecular dynamics simulations also highlighted the vital role of strong drug-polymer intermolecular interactions evolving among the ASD components. Overall, the impression of the complexity of in situ cross-linked ASDs has been reinforced with the excessive variation of parameters investigated in the current study, offering thus insights up to the submolecular level to lay the groundwork and foundations for the comprehensive assessment of a new emerging class of HDL amorphous API formulations.


Assuntos
Estabilidade de Medicamentos , Indometacina/química , Reagentes de Ligações Cruzadas , Composição de Medicamentos , Liberação Controlada de Fármacos , Simulação de Dinâmica Molecular
9.
Eur J Pharm Sci ; 165: 105955, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34298141

RESUMO

In the present study, a multi-component system comprised of dipalmitylphospatidylcholine (DPPC), Chitosan, Lactose, and L-Leucine was developed for pulmonary delivery. Microparticles were engineered by the spray drying process and the selection of the critical parameters was performed by applying experimental design. The microcarriers with the appropriate size and yield were co-formulated with two active pharmaceutical ingredients (APIs), namely, Formoterol fumarate and Budesonide, and they were further investigated. All formulations exhibited spherical shape, appropriate aerodynamic performance, satisfying entrapment efficiency, and drug load. Their physicochemical properties were evaluated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). The aerodynamic particle size characterization was determined using an eight-stage Andersen cascade impactor, whereas the release of the actives was monitored in vitro in simulated lung fluid. Additional evaluation of the microparticles' mucoadhesive properties was performed by ζ-potential measurements and ex vivo mucoadhesion study applying a falling liquid film method using porcine lung tissue. Cytotoxicity and cellular uptake studies in Calu-3 lung epithelial cell line were conducted to further investigate the safety and efficacy of the developed formulations.


Assuntos
Budesonida , Administração por Inalação , Animais , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Fumarato de Formoterol , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos
10.
Adv Drug Deliv Rev ; 176: 113858, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237405

RESUMO

In the last decade, additive manufacturing (AM) technologies have revolutionized how healthcare provision is envisioned. The rapid evolution of these technologies has already created a momentum in the effort to address unmet personalized needs in large patient groups, especially those belonging to sensitive subgroup populations (e.g., paediatric, geriatric, visually impaired). At the same time, AM technologies have become a salient ally to overcome defined health challenges in drug formulation development by addressing not only the requirement of personalized therapy, but also problems related to lowering non-specific drug distribution and the risk of adverse reactions, enhancing drug absorption and bioavailability, as well as ease of administration and patient compliance. To this end, mucoadhesive drug delivery systems fabricated with the support of AM technologies provide competitive advantages over conventional dosage forms, aiming to entice innovation in drug formulation with special focus on sensitive patient populations.


Assuntos
Sistemas de Liberação de Medicamentos , Mucosa/metabolismo , Impressão Tridimensional , Adesividade , Animais , Disponibilidade Biológica , Desenvolvimento de Medicamentos/métodos , Humanos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Medicina de Precisão/métodos , Tecnologia Farmacêutica/métodos
11.
Int J Pharm ; 599: 120437, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662466

RESUMO

Customization of pharmaceutical products is a central requirement for personalized medicines. However, the existing processing and supply chain solutions do not support such manufacturing-on-demand approaches. In order to solve this challenge, three-dimensional (3D) printing has been applied for customization of not only the dose and release characteristics, but also appearance of the product (e.g., size and shape). A solution for customization can be realized via non-expert-guided processing of digital designs and drug dose. This study presents a proof-of-concept computational algorithm which calculates the optimal dimensions of grid-like orodispersible films (ODFs), considering the recommended dose. Further, the algorithm exports a digital design file which contains the required ODF configuration. Cannabidiol (CBD) was incorporated in the ODFs, considering the simple correspondence between the recommended dose and the patient's weight. The ODFs were 3D-printed and characterized for their physicochemical, mechanical, disintegration and drug release properties. The algorithm was evaluated for its accuracy on dose estimation, highlighting the reproducibility of individualized ODFs. The in vitro performance was principally affected by the thickness and volume of the grid-like structures. The concept provides an alternative approach that promotes automation in the manufacturing of personalized medications in distributed points of care, such as hospitals and local pharmacies.


Assuntos
Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Liberação Controlada de Fármacos , Humanos , Reprodutibilidade dos Testes
12.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672949

RESUMO

Two different types of ordered mesoporous nanoparticles, namely MCM-41 and MCM-48, with similar pore sizes but different pore connectivity, were loaded with aprepitant via a passive diffusion method. The percentage of the loaded active agent, along with the encapsulation efficiency, was evaluated using High-performance Liquid Chromatography (HPLC) analysis complemented by Thermogravimetric Analysis (TGA). The determination of the pore properties of the mesoporous particles before and after the drug loading revealed the presence of confined aprepitant in the pore structure of the particles, while Powder X-ray Diffractometry(pXRD), Differential Scanning Calorimetry (DSC), and FTIR experiments indicated that the drug is in an amorphous state. The release profiles of the drug from the two different mesoporous materials were studied in various release media and revealed an aprepitant release up to 45% when sink conditions are applied. The cytocompatibility of the silica nanoparticles was assessed in Caco-2 cell monolayers, in the presence and absence of the active agent, suggesting that they can be used as carriers of aprepitant without presenting any toxicity in vitro.


Assuntos
Aprepitanto/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química , Administração Oral , Antieméticos/administração & dosagem , Antieméticos/farmacocinética , Aprepitanto/farmacocinética , Células CACO-2 , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Difusão , Liberação Controlada de Fármacos , Humanos , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
13.
AAPS PharmSciTech ; 22(1): 23, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400042

RESUMO

Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 µm for Eudragit L-100 fibers. The encapsulation efficiency for both CB and CBG was high (over 90%) for all formulations tested. Both in vitro release and disintegration tests of the formulations in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF) indicated the rapid disintegration and dissolution of the fibers and the subsequent rapid release of the drugs. The study concluded that the electrospinning process is a fast and efficient method to produce drug-loaded fibers suitable for the per os administration of cannabinoids.


Assuntos
Canabidiol/administração & dosagem , Canabinoides/administração & dosagem , Nanofibras/química , Administração Oral , Canabidiol/química , Canabinoides/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Ácidos Polimetacrílicos/química , Povidona/química
14.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451168

RESUMO

Mini-emulsion polymerization was applied for the synthesis of cross-linked polymeric nanoparticles comprised of methyl methacrylate (MMA) and Triethylene Glycol Dimethacrylate (TEGDMA) copolymers, used as matrix-carriers for hosting D-limonene. D-limonene was selected as a model essential oil, well known for its pleasant odor and its enhanced antimicrobial properties. The synthesized particles were assessed for their morphology and geometric characteristics by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), which revealed the formation of particles with mean diameters at the nanoscale (D[3,2] = 0.135 µm), with a spherical shape, while the dried particles formed larger clusters of several microns (D[3,2] = 80.69 µm). The percentage of the loaded D-limonene was quantified by Thermogravimetric Analysis (TGA), complemented by Gas Chromatography-Mass Spectrometry analysis coupled with a pyrolysis unit (Py/GC-MS). The results showed that the volatiles emitted by the nanoparticles were composed mainly of D-limonene (10% w/w of dry particles). Particles subjected to higher temperatures tended to decompose. The mechanism that governs the release of D-limonene from the as-synthesized particles was studied by fitting mathematical models to the release data obtained by isothermal TGA analysis of the dry particles subjected to accelerated conditions. The analysis revealed a two-stage release of the volatiles, one governed by D-limonene release and the other governed by TEGDMA release. Finally, the antimicrobial potency of the D-limonene-loaded particles was demonstrated, indicating the successful synthesis of polymeric nanoparticles loaded with D-limonene, owing to enhanced antimicrobial properties. The overall performance of these nanoparticles renders them a promising candidate material for the formation of self-sterilized surfaces with enhanced antimicrobial activity and potential application in food packaging.

16.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825421

RESUMO

Buccal films containing two vitamins, i.e., thiamine hydrochloride (THCl) and nicotinic acid (NA), were fabricated via two-dimensional (2D) inkjet printing. For the preparation of buccal films, solubility studies and rheological evaluations were conducted in distilled water and propylene-glycol (PG) as main solvent and viscosity/surface tension modifier, respectively. The increased solubility in the solvents' mixture indicated that manufacturing of several doses of the THCl and NA is achievable. Various doses were deposited onto sugar-sheet substrates, by increasing the number of printing passes. The physiochemical characterization (SEM, DSC, FTIR) revealed that inkjet printing does not affect the solid state of the matrix. Water uptake studies were conducted, to compare the different vitamin-loaded formulations. The in vitro release studies indicated the burst release of both vitamins within 10 min, a preferable feature for buccal administration. The in vitro permeation studies indicated that higher concentrations of the vitamins onto the sugar sheet improved the in vitro permeation performance of printed formulations.

17.
Carbohydr Polym ; 247: 116666, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829794

RESUMO

The present study reports on the comprehensive physico-mechanical evaluation of 3D printable alginate-methylcellulose hydrogels with bioactive components (Manuka honey, aloe vera gel, eucalyptus essential oil) using a combined experimental-numerical approach. The 3D printable carbohydrate inks demonstrated good swelling properties under moist conditions and adequate antimicrobial and antibiofilm efficacy against both Gram positive and negative bacteria. The effect of the bioactive compounds on the viscosity and mechanical properties of the 3D printable hydrogels was assessed with rheological, nanoindentation and shear test measurements. All hydrogel compositions showed good biocompatibility on human dermal fibroblasts, stimulating cell growth as confirmed by an in vitro wound healing assay. Finite element analysis simulation was employed to further advance the calculation accuracy of the nanoindentation tests, concluding that combination of an experimental and a numerical technique may constitute a useful method to characterize the mechanical behavior of composite hydrogel films for use in wound healing applications.


Assuntos
Alginatos/química , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hidrogéis/administração & dosagem , Metilcelulose/química , Impressão Tridimensional/instrumentação , Cicatrização/efeitos dos fármacos , Sobrevivência Celular , Análise de Elementos Finitos , Humanos , Hidrogéis/química , Tinta
18.
Drug Dev Ind Pharm ; 46(10): 1569-1577, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32619372

RESUMO

In the current study a 3D-printable system was developed, based on natural, food-grade and nontoxic materials that may be used as a platform technology to host cannabinoids, and more specifically CBD for medicinal purposes. Pectin and honey were combined toward the fabrication of 3D printable inks that form solid structures upon drying. This model food-grade 3D-printed system was evaluated as a host matrix for the incorporation of CBD, in the form of inclusion complexes with ß-cyclodextrins. The prepared solid inclusion complexes were characterized by means of Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared (FTIR) and Thermogravimetric Analysis (TGA) complemented with phase solubility studies and in vitro release of the ß-CD/CBD complex. The release behavior of CBD from the 3D printed formulations was assessed in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The results shown that that the highest release rates of CBD were obtained in SCF medium, with minor release in SGF and SIF media.


Assuntos
Canabidiol/química , Ciclodextrinas , Pectinas/química , Varredura Diferencial de Calorimetria , Tinta , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Drug Dev Ind Pharm ; 46(8): 1253-1264, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32597338

RESUMO

OBJECTIVE: The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS: Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS: The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS: The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.


Assuntos
Derivados da Hipromelose/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Impressão Tridimensional
20.
Pharmaceutics ; 12(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295189

RESUMO

Undesirable taste has always been a key issue for oral dosage forms. The aim of the present study was to co-formulate dexamethasone sodium phosphate (DSP), in common pediatric oral forms, using sweet preserves and/or different types of chocolate as excipients. An array of different kinds of chocolate were co-formulated with DSP and were further characterized by means of dynamic light scattering (DLS), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) spectroscopy. For the assay of active pharmaceutical ingredient (API), the chocolate samples were pre-treated by means of liquid extraction and analyzed using an high-performance liquid chromatographic (HPLC) method with a strong anion exchange column and a phosphate buffer (17 mM, pH = 3)/acetonitrile, 50:50 v/v as mobile phase. The developed chromatographic method was validated based on the International Conference on Harmonization (ICH) guidelines (%Mean Recovery = 99.4% and %Relative Standard Deviation, RSD = 0.43%). Furthermore, dissolution and in vitro digestion tests of chocolate formulations were evaluated. The DSP was found to be stable for at least 1 year in prepared preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA