Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Rofo ; 195(2): 135-138, 2023 02.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-35913055

RESUMO

As a result of technical developments and greater availability of imaging equipment, the number of neuroradiological examinations is steadily increasing [1]. Due to improved image quality and sensitivity, more details can be detected making reporting more complex and time-intensive. At the same time, reliable algorithms increasingly allow quantitative image analysis that should be integrated in reports in a standardized manner. Moreover, increasing digitalization is resulting in a decrease in the personal exchange between neuroradiologists and referring disciplines, thereby making communication more difficult. The introduction of structured reporting tailored to the specific disease and medical issue [2, 3] and corresponding to at least the second reporting level as defined by the German Radiological Society (https://www.befundung.drg.de/de-DE/2908/strukturierte-befundung/) is therefore desirable to ensure that the quality standards of neuroradiological reports continue to be met.The advantages of structured reporting include a reduced workload for neuroradiologists and an information gain for referring physicians. A complete and standardized list with relevant details for image reporting is provided to neuroradiologists in accordance with the current state of knowledge, thereby ensuring that important points are not forgotten [4]. A time savings and increase in efficiency during reporting were also seen [5]. Further advantages include report clarity and consistency and better comparability in follow-up examinations regardless of the neuroradiologist's particular reporting style. This results in better communication with the referring disciplines and makes clinical decision significantly easier [6, 7]. Although the advantages are significant, any potential disadvantages like the reduction of autonomy in reporting and inadequate coverage of all relevant details and any incidental findings not associated with the main pathology in complex cases or in rare diseases should be taken into consideration [4]. Therefore, studies examining the advantages of structured reporting, promoting the introduction of this system in the clinical routine, and increasing the acceptance among neuroradiologists are still needed.Numerous specific templates for structured reporting, e. g., regarding diseases in cardiology and oncology, are already available on the website www.befundung.drg.de . Multiple sclerosis (MS) is an idiopathic chronic inflammatory and neurodegenerative disease of the central nervous system and is the most common non-trauma-based inflammatory neurological disease in young adults. Therefore, it has significant individual and socioeconomic relevance [8]. Magnetic resonance imaging (MRI) plays an important role in the diagnosis, prognosis evaluation, and follow-up of this disease. MRI is established as the central diagnostic method in the diagnostic criteria. Therefore, specific changes are seen on MRI in almost all patients with a verified MS diagnosis [9]. Reporting of MRI datasets regarding the brain and spinal cord of patients with MS includes examination of the images with respect to the relevant medical issue in order to determine whether the McDonald criteria, which were revised in 2017 [10] and define dissemination in time and space clinically as well as with respect to MRI based on the recommendations of the MAGNIMS groups [11, 12], are fulfilled. A more precise definition of lesion types and locations according to the recommendations of an international expert group [13] is discussed in the supplementary material. Spinal cord signal abnormalities are seen in up to 92 % of MS patients [14-16] and are primarily located in the cervical spine [15]. The recommendations of the MAGNIMS-CMSC-NAIMS working group published in 2021 [11] explicitly recommend the use of structured reporting for MS patients.Therefore, a reporting template for evaluating MRI examinations of the brain and spinal cord of patients with MS was created as part of the BMBF-funded DIFUTURE consortium in consensus with neuroradiological and neurological experts in concordance with the recommendations mentioned above [11] and was made available for broad use (https://github.com/DRGagit/ak_befundung). The goal is to facilitate efficient and comprehensive evaluation of patients with MS in the primary diagnostic workup and follow-up imaging. These reporting templates are consensus-based recommendations and do not make any claim to general validity or completeness. The information technology working group (@GIT) of the German Radiological Society and the German Society for Neuroradiology strive to keep the reporting templates presented here up-to-date with respect to new research data and recommendations of the MAGNIMS-CMSC-NAIMS group [11]. KEY POINTS:: · consensus-based reporting templates. · template for the structured reporting of MRI examinations of patients with multiple sclerosis. · structured reporting might facilitate communication between neuroradiologists and referring disciplines. CITATION FORMAT: · Riederer I, Mühlau M, Wiestler B et al. Structured Reporting in Multiple Sclerosis - Consensus-Based Reporting Templates for Magnetic Resonance Imaging of the Brain and Spinal Cord. Fortschr Röntgenstr 2023; 195: 135 - 138.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Adulto Jovem , Humanos , Esclerose Múltipla/diagnóstico por imagem , Consenso , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem
2.
BMC Med Imaging ; 21(1): 91, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034677

RESUMO

BACKGROUND: To compare the quality of free-text reports (FTR) and structured reports (SR) of brain magnetic resonance imaging (MRI) examinations in patients following mechanical thrombectomy for acute stroke treatment. METHODS: A template for SR of brain MRI examinations based on decision trees was designed and developed in house and applied to twenty patients with acute ischemic stroke in addition to FTR. Two experienced stroke neurologists independently evaluated the quality of FTR and SR regarding clarity, content, presence of key features, information extraction, and overall report quality. The statistical analysis for the differences between FTR and SR was performed using the Mann-Whitney U-test or the Chi-squared test. RESULTS: Clarity (p < 0.001), comprehensibility (p < 0.001), inclusion of relevant findings (p = 0.016), structure (p = 0.005), and satisfaction with the content of the report for immediate patient management (p < 0.001) were evaluated significantly superior for the SR by both neurologist raters. One rater additionally found the explanation of the patient's clinical symptoms (p = 0.003), completeness (p < 0.009) and length (p < 0.001) of SR to be significantly superior compared to FTR and stated that there remained no open questions, requiring further consultation of the radiologist (p < 0.001). Both neurologists preferred SR over FTR. CONCLUSIONS: The use of SR for brain magnetic resonance imaging may increase the report quality and satisfaction of the referring physicians in acute ischemic stroke patients following mechanical thrombectomy. Trial registration Retrospectively registered.


Assuntos
AVC Isquêmico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Trombólise Mecânica , Prontuários Médicos/normas , Doença Aguda , Idoso , Encéfalo/diagnóstico por imagem , Compreensão , Humanos , AVC Isquêmico/cirurgia
3.
Eur Radiol ; 30(5): 2821-2829, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32002640

RESUMO

OBJECTIVES: Normative brain volume reports (NBVRs) are becoming more and more available for the workup of dementia patients in clinical routine. However, it is yet unknown how this information can be used in the radiological decision-making process. The present study investigates the diagnostic value of NBVRs for detection and differential diagnosis of distinct regional brain atrophy in several dementing neurodegenerative disorders. METHODS: NBVRs were obtained for 81 consecutive patients with distinct dementing neurodegenerative diseases and 13 healthy controls (HC). Forty Alzheimer's disease (AD; 18 with dementia, 22 with mild cognitive impairment (MCI), 11 posterior cortical atrophy (PCA)), 20 frontotemporal dementia (FTD), and ten semantic dementia (SD) cases were analyzed, and reports were tested qualitatively for the representation of atrophy patterns. Gold standard diagnoses were based on the patients' clinical course, FDG-PET imaging, and/or cerebrospinal fluid (CSF) biomarkers following established diagnostic criteria. Diagnostic accuracy of pattern representations was calculated. RESULTS: NBVRs improved the correct identification of patients vs. healthy controls based on structural MRI for rater 1 (p < 0.001) whereas the amount of correct classifications was rather unchanged for rater 2. Correct differential diagnosis of dementing neurodegenerative disorders was significantly improved for both rater 1 (p = 0.001) and rater 2 (p = 0.022). Furthermore, interrater reliability was improved from moderate to excellent for both detection and differential diagnosis of neurodegenerative diseases (κ = 0.556/0.894 and κ = 0.403/0.850, respectively). CONCLUSION: NBVRs deliver valuable and observer-independent information, which can improve differential diagnosis of neurodegenerative diseases. KEY POINTS: • Normative brain volume reports increase detection of neurodegenerative atrophy patterns compared to visual reading alone. • Differential diagnosis of regionally distinct atrophy patterns is improved. • Agreement between radiologists is significantly improved from moderate to excellent when using normative brain volume reports.


Assuntos
Algoritmos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
4.
Eur Radiol Exp ; 3(1): 13, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30900111

RESUMO

BACKGROUND: To study hippocampus subfield volumes in patients after microsurgical clipping (MC) and/or endovascular coiling (EC) of intracranial aneurysms. METHODS: Hippocampus subfield volumetry was performed using FreeSurfer v6.0 in 51 patients (35 females, mean age 54.9 ± 11.9 years, range 24-78 years). Visual inspection of image and segmentation quality was performed prior to statistical analyses. Multiple regression analysis, controlled for age, sex, and side of treatment, was used to assess the impact of prior MC and history of subarachnoid haemorrhage (SAH) on hippocampus subfield volumes (cornu ammonis (CA)-2/3, CA-4, subiculum). Partial correlation analyses were used to assess effect of multiple treatments on hippocampus subfield volumes. RESULTS: Prior MC was significantly associated with lower hippocampal subfield volumes in MC patients for right and left CA-2/3 (ß = -22.32 [-40.18, -4.45]; p = 0.016 and ß = -20.03 [-39.38, -0.68]; p = 0.043) and right CA-4 (ß = -17.00 [-33.86, 0.12]; p = 0.048). History of SAH was not significantly associated with hippocampal subfield volumes. We observed a higher disease burden in the MC cohort. The number of aneurysms correlated with right-sided hippocampal subfield volumes while the number of treatment interventions did not. CONCLUSION: In this explorative study, we found that history of MC was significantly associated with lower volumes in distinct hippocampal subfields, which may be a consequence of a more extensive treatment. This could indicate specific atrophy of CA-2/3 after MC and should motivate hippocampal subfield assessment in larger cohorts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA