Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 702, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937491

RESUMO

We present light measurements in Arctic sea ice obtained during the year-long MOSAiC drift through the central Arctic Ocean in 2019-2020. Such measurements are important as sea ice plays a fundamental role in the Arctic climate and ecosystem. The partitioning of solar irradiance determines the availability of radiation energy for thermodynamic processes and primary productivity. However, observations of light partitioning along the vertical path through the ice are rare. The data we present were collected by two measurement systems, the lightharp and the lightchain, both measuring autonomously multi-spectral light intensity in different depths within the ice. We present the dataset, retrieval methods for derived optical properties, and the conversion into the final, freely available data product, following standardized conventions. We particularly focus on the specifications of the newly developed lightharp system. Combined with the interdisciplinary and multi-instrument setup of MOSAiC, we expect great potential of the dataset to foster our understanding of light transmission and reflection in the sea-ice cover and interactions with physical sea-ice properties and the polar ecosystem.

2.
Glob Chang Biol ; 30(1): e17090, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273483

RESUMO

Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.


Assuntos
Diatomáceas , Ácidos Graxos Ômega-3 , Humanos , Camada de Gelo , Oceanos e Mares , Regiões Árticas , Ácidos Graxos
3.
Ambio ; 51(2): 318-332, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34822116

RESUMO

Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air-sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.


Assuntos
Camada de Gelo , Microbiota , Regiões Árticas , Mudança Climática , Ecossistema , Camada de Gelo/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA