RESUMO
The use of foods to color other foods (coloring food) should be considered in food production. In this study, freeze-dried canistel (Pouteria campechiana (Kunth) Baehni) pulp underwent a photostability test. A blue LED light with a maximum intensity of 420 nm was utilized to induce photodegradation of the pulp. After irradiation, the samples were analyzed using photoacoustic spectroscopy. Different concentrations (2%, 4%, and 6%) of the pulp were employed as coloring food in ice cream, and the ice cream was thoroughly characterized. Photoacoustic spectroscopy provided valuable insights into dehydrated canistel pulp, revealing two stages of photoreaction involving carotenoids (violaxanthin and ξ-carotene) and demonstrating photostability under visible LED irradiation. The ice cream made with natural food dye produce elevated levels of bioactive compounds and retained a stable color throughout storage. All ice creams exhibited thixotropy. Ice creams with higher pulp concentrations displayed greater resistance to shear stress and, in sensory tests, received the highest scores, attributed to their intense yellow color. Dehydrated canistel pulp holds significant potential for use as food coloring in the industry due to its photostability. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05991-5.
RESUMO
Trub, a brewing by-product, can be used as alternative ingredient for foods nutritional enrichment after its bitter compounds extraction. Study presents the optimisation of bitter compounds extraction from trub by Box-Behnken design, and use of debittered trub (DT) as new ingredient to enrich pasta. Bitterness extraction process was evaluated at different pH levels, time and extraction steps, and physical-chemical properties of DT (obtained under optimal conditions) were evaluated. Pasta was enriched with DT (5%, 10% and 15%) and its physical-chemical and quality properties were evaluated. Protein structure and chemical composition of trub were altered after process, also modifying its technological properties. Pasta with 10% DT increased in 33.51% protein content. Interaction of DT and wheat proteins resulted in a more compact structure, and DT water absorption capacity provided pasta texture changes. DT use improved pasta nutritional and quality properties, enabling trub valorisation and its use as vegetable proteins alternative source.
Assuntos
Farinha , Triticum , Triticum/química , Farinha/análise , Culinária , Melhoria de Qualidade , Proteínas de Vegetais Comestíveis , ÁguaRESUMO
Acacia mearnsii gum is not commercially exploited, being characterized as residue from A. mearnsii cultivation. This work investigated the A. mearnsii gum polysaccharide composition, its cytotoxicity and the technological effect as a stabilizer in ice cream. A. mearnsii gum showed a similar chemical structure to commercial gum Arabic and did not decrease the viability and proliferation of fibroblast cells (Balb/3T3) and hepatocarcinoma (HepG2). Rheological tests showed that the ice cream stabilized by the A. mearnsii gum had a more structured system (more interactions between the mixture components) and the same melting characteristics as the ice cream samples made with commercial gum Arabic. The results showed that A. mearnsii gum, which is actually an agro-industrial residue from tannin production for industry, is a potential stabilizing gum for the food industry, contributing to the economic development of the exploitation chain of A. mearnsii products and by-products.
Assuntos
Acacia/química , Sorvetes , Gomas Vegetais/química , Polissacarídeos/análise , Animais , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Goma Arábica/química , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos BALB C , Gomas Vegetais/análise , Gomas Vegetais/toxicidade , Polissacarídeos/química , ReologiaRESUMO
Milk components have the ability to interact with functional compounds, such as polyphenols. This may result in altered biological activity of the compounds, and changes in the technological properties of dairy products. The objective of this study was to examine the effect of the addition of yerba mate (YM) on the physico-chemical and sensory properties of fresh cheese (FC) during storage (21 days). Different concentrations of YM were used for FC production: 0.0% (control), 0.5% (FC5), 1.0% (FC10) and 2.0% (FC20); and the bioactive compound concentration, antioxidant activity, color, texture, structure and sensory acceptance were evaluated. YM conferred antioxidant activity to FC; and affected the color, texture and structure. Storage time influenced all evaluated parameters except for color. FCs with 0.5 and 1.0% YM were scored as having higher sensory acceptability than FC with 2.0% YM. However, all supplemented FCs were well accepted by consumers (scores above 6). The YM could represent a source of bioactive compounds to improve the biological activity of dairy products.