Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(29)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631325

RESUMO

We report on the fabrication of a novel design of GaAs/(In,Ga)As/GaAs radial nanowire heterostructures on a Si 111 substrate, where, for the first time, the growth of inhomogeneous shells on a lattice mismatched core results in straight nanowires instead of bent. Nanowire bending caused by axial tensile strain induced by the (In,Ga)As shell on the GaAs core is reversed by axial compressive strain caused by the GaAs outer shell on the (In,Ga)As shell. Progressive nanowire bending and reverse bending in addition to the axial strain evolution during the two processes are accessed byin situby x-ray diffraction. The diameter of the core, thicknesses of the shells, as well as the indium concentration and distribution within the (In,Ga)As quantum well are revealed by 2D energy dispersive x-ray spectroscopy using a transmission electron microscope. Shell(s) growth on one side of the core without substrate rotation results in planar-like radial heterostructures in the form of free standing straight nanowires.

2.
Nanotechnology ; 32(20): 205705, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33578397

RESUMO

We investigate the strain evolution and relaxation process as function of increasing lattice mismatch between the GaAs core and surrounding In x Ga1-x As shell in core-shell nanowire heterostructures grown on Si(111) substrates. The dimensions of the core and shell are kept constant whereas the indium concentration inside the shell is varied. Measuring the [Formula: see text] and [Formula: see text] in-plane Bragg reflections normal to the nanowire side edges and side facets, we observe a transition from elastic to plastic strain release for a shell indium content x > 0.5. Above the onset of plastic strain relaxation, indium rich mounds and an indium poor coherent shell grow simultaneously around the GaAs core. Mound formation was observed for indium contents x = 0.5 and 0.6 by scanning electron microscopy. Considering both the measured radial reflections and the axial 111 Bragg reflection, the 3D strain variation was extracted separately for the core and the In x Ga1-x As shell.

3.
J Appl Crystallogr ; 53(Pt 5): 1310-1320, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33117111

RESUMO

Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to ∼3 µm resulting in strain variation of ∼2.5% in the NW core are found.

4.
J Synchrotron Radiat ; 27(Pt 5): 1200-1208, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876594

RESUMO

Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA