Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1307319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836002

RESUMO

Background: Migraines affect one billion individuals globally, with a higher occurrence among young adults and women. A significant survey in the United States indicated that 17.1% of women and 5.6% of men suffer from migraines. This study seeks to investigate the potential connection between NLRP3 and MMP9 in migraine pathology. Methods: The research involved searching databases such as PubMed, Scopus, Science Direct, Google Scholar, and Proquest, with the search concluding on March 31, 2024. Following PRISMA guidelines, PICO data were collected, focusing exclusively on animal models induced by Nitroglycerine (10 mg/kg), while excluding clinical studies. Results: The study, originally registered in Prospero Reg. No. CRD42022355893, conducted bias analysis using SYRCLE's RoB tool and evaluated author consensus using GraphPad v9.5.1. Out of 7,359 search results, 22 papers met the inclusion criteria. Inter-rater reliability among reviewers was assessed using Cohen's kappa statistics. Conclusion: This review summarizes 22 preclinical studies on Nitroglycerin (NTG), NLRP3, MMP9, and related biomarkers in migraine. They reveal that NTG, especially at 10 mg/kg, consistently induces migraine-like symptoms in rodents by activating NLRP3 inflammasome and stimulating proinflammatory molecule production. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, CRD42022355893.

2.
Front Pharmacol ; 14: 1283440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942488

RESUMO

This systematic review analyzes monosodium glutamate (MSG) in the Alzheimer's disease-like condition to enhance translational research. Our review seeks to understand how MSG affects the brain and causes degenerative disorders. Due to significant preclinical data linking glutamate toxicity to Alzheimer's disease and the lack of a comprehensive review or meta-analysis, we initiated a study on MSG's potential link. We searched PubMed, ScienceDirect, ProQuest, DOAJ, and Scopus for animal research and English language papers without time constraints. This study used the PRISMA-P framework and PICO technique to collect population, intervention or exposure, comparison, and result data. It was registered in PROSPERO as CRD42022371502. MSG affected mice's exploratory behaviors and short-term working memory. The brain, hippocampus, and cerebellar tissue demonstrated neuronal injury-related histological and histomorphometric changes. A total of 70% of MSG-treated mice had poor nesting behavior. The treated mice also had more hyperphosphorylated tau protein in their cortical and hippocampus neurons. Glutamate and glutamine levels in the brain increased with MSG, and dose-dependent mixed horizontal locomotor, grooming, and anxiety responses reduced. MSG treatment significantly decreased phospho-CREB protein levels, supporting the idea that neurons were harmed, despite the increased CREB mRNA expression. High MSG doses drastically lower brain tissue and serum serotonin levels. In conclusion, MSG showed AD-like pathology, neuronal atrophy, and short-term memory impairment. Further research with a longer time span and deeper behavioral characterization is needed. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier [CRD42022371502].

3.
Drug Metab Lett ; 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35422230

RESUMO

BACKGROUND: Neurological complications are most likely to be fatal and cause loss of ability to function or care for self. These include Alzheimer's disease and cognitive impairment. The main aim of the review is to determine the effects of various drugs and their cognitive risk with the need to opt for herbal therapy as an adjuvant in treating neurological conditions like Alzheimer's disease with lesser-known side effects. The Methodology: Involved a detailed literature survey which was performed through an online database, such as Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. The study included randomized trials and original research conducted by herbal supplements on animal models to assess expression of upregulation of signalling pathways. Various studies involved in treating dementia, neurological disorders, Alzheimer disease, cognitive dysfunction were included. RESULTS: Found that various studies involved plant-based products were showing improvement in prevention of disease and signalling pathways with lesser-known side effects. CONCLUSION: It was observed that plant-based products play a major role in the prevention of neurological complications. Herbal medicines could most suitably prevent Alzheimer's risk with less known side effects in contrast with the existing treatment patterns. However, to improve the utility of herbal medicines, more evidences from in vitro, in vivo, and clinical trials need to be addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA