Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38577224

RESUMO

Hyperspectral imaging (HSI) technologies have enabled a range of experimental techniques and studies in the fluorescence microscopy field. Unfortunately, a drawback of many HSI microscope platforms is increased acquisition time required to collect images across many spectral bands, as well as signal loss due to the need to filter or disperse emitted fluorescence into many discrete bands. We have previously demonstrated that an alternative approach of scanning the fluorescence excitation spectrum can greatly improve system efficiency by decreasing light losses associated with emission filtering. Our initial system was configured using an array of thin-film tunable filters (TFTFs, VersaChrome, Semrock) mounted in a tiltable filter wheel (VF-5, Sutter) that required ~150-200 ms to switch between wavelengths. Here, we present a new configuration for high-speed switching of TFTFs to allow rapid time-lapse HSI microscopy. A TFTF array was mounted in a custom holder that was attached to a piezoelectric rotation mount (ThorLabs), allowing high-speed rotation. Switching between adjacent filters was achieved using the internal optics of a DG-4 lightsource (Sutter Instrument), including a pair of off-axis parabolic mirrors and galvanometers. Output light was coupled to a liquid lightguide and into an inverted widefield fluorescence microscope (TI-2, Nikon Instruments). Initial tests indicate that the HSI system provides a 15-20 nm bandwidth tunable excitation band and ~10-20 ms wavelength switch time, allowing for high-speed HSI imaging of dynamic cellular events. This work was supported by NIH P01HL066299, R01HL169522, NIH TL1TR003106, and NSF MRI1725937.

2.
Biochem Soc Trans ; 52(1): 191-203, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334148

RESUMO

Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.


Assuntos
Cálcio , Imageamento Hiperespectral , AMP Cíclico , Sistemas do Segundo Mensageiro , Transdução de Sinais , Transferência Ressonante de Energia de Fluorescência/métodos
3.
Bioengineering (Basel) ; 10(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37370573

RESUMO

Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in fluorescence microscopy. However, traditional fluorescence microscopy HSI systems have suffered from limited signal strength due to the need to filter or disperse the emitted light across many spectral bands. We have previously demonstrated that sampling the fluorescence excitation spectrum may provide an alternative approach with improved signal strength. Here, we report on the use of excitation-scanning HSI for dynamic cell signaling studies-in this case, the study of the second messenger Ca2+. Time-lapse excitation-scanning HSI data of Ca2+ signals in human airway smooth muscle cells (HASMCs) were acquired and analyzed using four spectral analysis algorithms: linear unmixing (LU), spectral angle mapper (SAM), constrained energy minimization (CEM), and matched filter (MF), and the performances were compared. Results indicate that LU and MF provided similar linear responses to increasing Ca2+ and could both be effectively used for excitation-scanning HSI. A theoretical sensitivity framework was used to enable the filtering of analyzed images to reject pixels with signals below a minimum detectable limit. The results indicated that subtle kinetic features might be revealed through pixel filtering. Overall, the results suggest that excitation-scanning HSI can be employed for kinetic measurements of cell signals or other dynamic cellular events and that the selection of an appropriate analysis algorithm and pixel filtering may aid in the extraction of quantitative signal traces. These approaches may be especially helpful for cases where the signal of interest is masked by strong cellular autofluorescence or other competing signals.

4.
PLoS One ; 18(5): e0284394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167308

RESUMO

Physiological function is regulated through cellular communication that is facilitated by multiple signaling molecules such as second messengers. Analysis of signal dynamics obtained from cell and tissue imaging is difficult because of intricate spatially and temporally distinct signals. Signal analysis tools based on static region of interest analysis may under- or overestimate signals in relation to region of interest size and location. Therefore, we developed an algorithm for biological signal detection and analysis based on dynamic regions of interest, where time-dependent polygonal regions of interest are automatically assigned to the changing perimeter of detected and segmented signals. This approach allows signal profiles to be rigorously and precisely tracked over time, eliminating the signal distortion observed with static methods. Integration of our approach with state-of-the-art image processing and particle tracking pipelines enabled the isolation of dynamic cellular signaling events and characterization of biological signaling patterns with distinct combinations of parameters including amplitude, duration, and spatial spread. Our algorithm was validated using synthetically generated datasets and compared with other available methods. Application of the algorithm to volumetric time-lapse hyperspectral images of cyclic adenosine monophosphate measurements in rat microvascular endothelial cells revealed distinct signal heterogeneity with respect to cell depth, confirming the utility of our approach for analysis of 5-dimensional data. In human tibial arteries, our approach allowed the identification of distinct calcium signal patterns associated with atherosclerosis. Our algorithm for automated detection and analysis of second messenger signals enables the decoding of signaling patterns in diverse tissues and identification of pathologic cellular responses.


Assuntos
Algoritmos , Células Endoteliais , Ratos , Humanos , Animais , Sistemas do Segundo Mensageiro , Processamento de Imagem Assistida por Computador/métodos , Transdução de Sinais
5.
J Biomed Opt ; 28(2): 026502, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36761255

RESUMO

Significance: Hyperspectral imaging (HSI) technologies offer great potential in fluorescence microscopy for multiplexed imaging, autofluorescence removal, and analysis of autofluorescent molecules. However, there are also associated trade-offs when implementing HSI in fluorescence microscopy systems, such as decreased acquisition speed, resolution, or field-of-view due to the need to acquire spectral information in addition to spatial information. The vast majority of HSI fluorescence microscopy systems provide spectral discrimination by filtering or dispersing the fluorescence emission, which may result in loss of emitted fluorescence signal due to optical filters, dispersive optics, or supporting optics, such as slits and collimators. Technologies that scan the fluorescence excitation spectrum may offer an approach to mitigate some of these trade-offs by decreasing the complexity of the emission light path. Aim: We describe the development of an optical technique for hyperspectral imaging fluorescence excitation-scanning (HIFEX) on a microscope system. Approach: The approach is based on the design of an array of wavelength-dependent light emitting diodes (LEDs) and a unique beam combining system that uses a multifurcated mirror. The system was modeled and optimized using optical ray trace simulations, and a prototype was built and coupled to an inverted microscope platform. The prototype system was calibrated, and initial feasibility testing was performed by imaging multilabel slide preparations. Results: We present results from optical ray trace simulations, prototyping, calibration, and feasibility testing of the system. Results indicate that the system can discriminate between at least six fluorescent labels and autofluorescence and that the approach can provide decreased wavelength switching times, in comparison with mechanically tuned filters. Conclusions: We anticipate that LED-based HIFEX microscopy may provide improved performance for time-dependent and photosensitive assays.


Assuntos
Carmustina , Óptica e Fotônica , Cintilografia , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35755606

RESUMO

Ca2+ and cAMP are ubiquitous second messengers known to differentially regulate a variety of cellular functions over a wide range of timescales. Studies from a variety of groups support the hypothesis that these signals can be localized to discrete locations within cells, and that this subcellular localization is a critical component of signaling specificity. However, to date, it has been difficult to track second messenger signals at multiple locations. To overcome this limitation, we utilized excitation scan-based hyperspectral imaging approaches to track second messenger signals as well as labeled cellular structures and/or proteins in the same cell. We have previously reported that hyperspectral imaging techniques improve the signal-to-noise ratios of both fluorescence measurements, and are thus well suited for the measurement of localized Ca2+ signals. We investigated the spatial spread and intensities of agonist-induced Ca2+ signals in primary human airway smooth muscle cells (HASMCs) using the Ca2+ indicator Cal520. We measured responses triggered by three agonists, carbachol, histamine, and chloroquine. We utilized custom software coded in MATLAB and Python to assess agonist induced changes in Ca2+ levels. Software algorithms removed the background and applied correction coefficients to spectral data prior to linear unmixing, spatial and temporal filtering, adaptive thresholding, and automated region of interest (ROI) detection. All three agonists triggered transient Ca2+ responses that were spatially and temporally complex. We are currently analyzing differences in both ROI area and intensity distributions triggered by these agonists. This work was supported by NIH awards P01HL066299, K25HL136869, and R01HL137030 and NSF award MRI1725937.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35755607

RESUMO

Studies of the cAMP signaling pathway have led to the hypothesis that localized cAMP signals regulate distinct cellular responses. Much of this work focused on measurement of localized cAMP signals using cAMP sensors based upon FÓ§rster resonance energy transfer (FRET). FRET-based probes are comprised of a cAMP binding domain sandwiched between donor and acceptor fluorophores. Binding of cAMP triggers a conformational change which alters FRET efficiency. In order to study localized cAMP signals, investigators have targeted FRET probes to distinct subcellular domains. This approach allows detection of cAMP signals at distinct subcellular locations. However, these approaches do not measure localized cAMP signals per se, rather they measure cAMP signals at specific locations and typically averaged throughout the cell. To address these concerns, our group implemented hyperspectral imaging approaches for measuring highly multiplexed signals in cells and tissues. We have combined these approaches with custom analysis software implemented in MATLAB and Python. Images were filtered both spatially and temporally, prior to adaptive thresholding (OTSU) to detect cAMP signals. These approaches were used to interrogate the distributions of isoproterenol and prostaglandin-triggered cAMP signals in human airway smooth muscle cells (HASMCs). Results demonstrate that cAMP signals are spatially and temporally complex. We observed that isoproterenol- and prostaglandin-induced cAMP signals are triggered at the plasma membrane and in the cytosolic space. We are currently implementing analysis approaches to better quantify and visualize the complex distributions of cAMP signals. This work was supported by NIH P01HL066299, R01HL058506, and S10RR027535.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35755608

RESUMO

A ubiquitous second messenger molecule, cAMP is responsible for orchestrating many different cellular functions through a variety of pathways. FÓ§rster resonance energy transfer (FRET) probes have been used to visualize cAMP spatial gradients in pulmonary microvascular endothelial cells (PMVECs). However, FRET probes have inherently low signal-to-noise ratios; multiple sources of noise can obscure accurate visualization of cAMP gradients using a hyperspectral imaging system. FRET probes have also been used to measure cAMP gradients in 3D; however, it can be difficult to differentiate between true FRET signals and noise. To further understand the effects of noise on experimental data, a model was developed to simulate cAMP gradients under experimental conditions. The model uses a theoretical cAMP heatmap generated using finite element analysis. This heatmap was converted to simulate the FRET probe signal that would be detected experimentally with a hyperspectral imaging system. The signal was mapped onto an image of unlabeled PMVECs. The result was a time lapse model of cAMP gradients obscured by autofluorescence, as visualized with FRET probes. Additionally, the model allowed the simulated expression level of FRET signal to be varied. This allowed accurate attribution of signal to FRET and autofluorescence. Comparing experimental data to the model results at different levels of FRET efficiency has allowed improved understanding of FRET signal specificity and how autofluorescence interferes with FRET signal detection. In conclusion, this model can more accurately determine cAMP gradients in PMVECs. This work was supported by NIH award P01HL066299, R01HL58506 and NSF award 1725937.

9.
Cell Signal ; 95: 110348, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504529

RESUMO

Second messenger signaling is required for cellular processes. We previously reported that extracellular vesicles (EVs) from stimulated cultured endothelial cells contain the biochemical second messenger, cAMP. In the current study, we sought to determine whether cAMP-enriched EVs induce second messenger signaling pathways in naïve recipient cells. Our results indicate that cAMP-enriched EVs increase cAMP content sufficient to stimulate PKA activity. The implications of our work are that EVs represent a novel intercellular mechanism for second messenger, specifically cAMP, signaling.


Assuntos
AMP Cíclico , Vesículas Extracelulares , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais
10.
Methods Mol Biol ; 2483: 167-180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286675

RESUMO

A variety of FRET probes have been developed to examine cAMP localization and dynamics in single cells. These probes offer a readily accessible approach to measure localized cAMP signals. However, given the low signal-to-noise ratio of most FRET probes and the dynamic nature of the intracellular environment, there have been marked limitations in the ability to use FRET probes to study localized signaling events within the same cell. Here, we outline a methodology to dissect kinetics of cAMP-mediated FRET signals in single cells using automated image analysis approaches. We additionally extend these approaches to the analysis of subcellular regions. These approaches offer a unique opportunity to assess localized cAMP kinetics in an unbiased, quantitative fashion.


Assuntos
AMP Cíclico , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Razão Sinal-Ruído
11.
J Biol Chem ; 298(1): 101482, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896150

RESUMO

Patients who recover from nosocomial pneumonia oftentimes exhibit long-lasting cognitive impairment comparable with what is observed in Alzheimer's disease patients. We previously hypothesized that the lung endothelium contributes to infection-related neurocognitive dysfunction, because bacteria-exposed endothelial cells release a form(s) of cytotoxic tau that is sufficient to impair long-term potentiation in the hippocampus. However, the full-length lung and endothelial tau isoform(s) have yet to be resolved and it remains unclear whether the infection-induced endothelial cytotoxic tau triggers neuronal tau aggregation. Here, we demonstrate that lung endothelial cells express a big tau isoform and three additional tau isoforms that are similar to neuronal tau, each containing four microtubule-binding repeat domains, and that tau is expressed in lung capillaries in vivo. To test whether infection elicits endothelial tau capable of causing transmissible tau aggregation, the cells were infected with Pseudomonas aeruginosa. The infection-induced tau released from endothelium into the medium-induced neuronal tau aggregation in reporter cells, including reporter cells that express either the four microtubule-binding repeat domains or the full-length tau. Infection-induced release of pathological tau variant(s) from endothelium, and the ability of the endothelial-derived tau to cause neuronal tau aggregation, was abolished in tau knockout cells. After bacterial lung infection, brain homogenates from WT mice, but not from tau knockout mice, initiated tau aggregation. Thus, we conclude that bacterial pneumonia initiates the release of lung endothelial-derived cytotoxic tau, which is capable of propagating a neuronal tauopathy.


Assuntos
Pneumopatias , Pneumonia Bacteriana , Tauopatias , Proteínas tau , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/microbiologia , Disfunção Cognitiva/patologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Humanos , Pulmão/irrigação sanguínea , Pneumopatias/metabolismo , Pneumopatias/microbiologia , Pneumopatias/patologia , Camundongos , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Isoformas de Proteínas , Pseudomonas aeruginosa , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
12.
Cancer Prev Res (Phila) ; 14(11): 995-1008, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34584001

RESUMO

Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic ß-catenin, inhibited Wnt-induced nuclear translocation of ß-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/ß-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.


Assuntos
Neoplasias do Colo , beta Catenina , Animais , Carcinogênese , Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/prevenção & controle , Camundongos , Inibidores de Fosfodiesterase/farmacologia , Sulindaco/farmacologia
13.
J Vis Exp ; (164)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33191928

RESUMO

Cyclic AMP is a second messenger that is involved in a wide range of cellular and physiological activities. Several studies suggest that cAMP signals are compartmentalized, and that compartmentalization contributes to signaling specificity within the cAMP signaling pathway. The development of FÓ§rster resonance energy transfer (FRET) based biosensors has furthered the ability to measure and visualize cAMP signals in cells. However, these measurements are often confined to two spatial dimensions, which may result in misinterpretation of data. To date, there have been only very limited measurements of cAMP signals in three spatial dimensions (x, y, and z), due to the technical limitations in using FRET sensors that inherently exhibit low signal to noise ratio (SNR). In addition, traditional filter-based imaging approaches are often ineffective for accurate measurement of cAMP signals in localized subcellular regions due to a range of factors, including spectral crosstalk, limited signal strength, and autofluorescence. To overcome these limitations and allow FRET-based biosensors to be used with multiple fluorophores, we have developed hyperspectral FRET imaging and analysis approaches that provide spectral specificity for calculating FRET efficiencies and the ability to spectrally separate FRET signals from confounding autofluorescence and/or signals from additional fluorescent labels. Here, we present the methodology for implementing hyperspectral FRET imaging as well as the need to construct an appropriate spectral library that is neither undersampled nor oversampled to perform spectral unmixing. While we present this methodology for measurement of three-dimensional cAMP distributions in pulmonary microvascular endothelial cells (PMVECs), this methodology could be used to study spatial distributions of cAMP in a range of cell types.


Assuntos
AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Imageamento Tridimensional , Algoritmos , Animais , Artefatos , Colforsina/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ratos , Processamento de Sinais Assistido por Computador , Transdução de Sinais , Software , Transfecção
14.
Am J Physiol Heart Circ Physiol ; 319(2): H349-H358, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589443

RESUMO

Here, we report the generation of a Cre-recombinase (iCre) transgenic rat, where iCre is driven using a vascular endothelial-cadherin (CDH5) promoter. The CDH5 promoter was cloned from rat pulmonary microvascular endothelial cells and demonstrated ~60% similarity to the murine counterpart. The cloned rat promoter was 2,508 bp, it extended 79 bp beyond the transcription start site, and it was 22,923 bp upstream of the translation start site. The novel promoter was cloned upstream of codon-optimized iCre and subcloned into a Sleeping Beauty transposon vector for transpositional transgenesis in Sprague-Dawley rats. Transgenic founders were generated and selected for iCre expression. Crossing the CDH5-iCre rat with a tdTomato reporter rat resulted in progeny displaying endothelium-restricted fluorescence. tdTomato fluorescence was prominent in major arteries and veins, and it was similar in males and females. Quantitative analysis of the carotid artery and the jugular vein revealed that, on average, more than 50% of the vascular surface area exhibited strong fluorescence. tdTomato fluorescence was observed in the circulations of every tissue tested. The microcirculation in all tissues tested displayed homogenous fluorescence. Fluorescence was examined across young (6-7.5 mo), middle (14-16.5 mo), and old age (17-19.5 mo) groups. Although tdTomato fluorescence was seen in middle- and old-age animals, the intensity of the fluorescence was significantly reduced compared with that seen in the young rats. Thus, this endothelium-restricted transgenic rat offers a novel platform to test endothelial microheterogeneity within all vascular segments, and it provides exceptional resolution of endothelium within-organ microcirculation for application to translational disease models.NEW & NOTEWORTHY The use of transgenic mice has been instrumental in advancing molecular insight of physiological processes, yet these models oftentimes do not faithfully recapitulate human physiology and pathophysiology. Rat models better replicate some human conditions, like Group 1 pulmonary arterial hypertension. Here, we report the development of an endothelial cell-restricted transgenic reporter rat that has broad application to vascular biology. This first-in-kind model offers exceptional endothelium-restricted tdTomato expression, in both conduit vessels and the microcirculations of organs.


Assuntos
Antígenos CD/genética , Caderinas/genética , Células Endoteliais/metabolismo , Genes Reporter , Integrases/genética , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica , Integrases/metabolismo , Proteínas Luminescentes/biossíntese , Masculino , Microcirculação , Ratos Sprague-Dawley , Ratos Transgênicos , Distribuição Tecidual , Transposases/genética , Transposases/metabolismo , Proteína Vermelha Fluorescente
15.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1074-L1083, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186399

RESUMO

Activation of the inflammasome-caspase-1 axis in lung endothelial cells is emerging as a novel arm of the innate immune response to pneumonia and sepsis caused by Pseudomonas aeruginosa. Increased levels of circulating autacoids are hallmarks of pneumonia and sepsis and induce physiological responses via cAMP signaling in targeted cells. However, it is unknown whether cAMP affects other functions, such as P. aeruginosa-induced caspase-1 activation. Herein, we describe the effects of cAMP signaling on caspase-1 activation using a single cell flow cytometry-based assay. P. aeruginosa infection of cultured lung endothelial cells caused caspase-1 activation in a distinct population of cells. Unexpectedly, pharmacological cAMP elevation increased the total number of lung endothelial cells with activated caspase-1. Interestingly, addition of cAMP agonists augmented P. aeruginosa infection of lung endothelial cells as a partial explanation underlying cAMP priming of caspase-1 activation. The cAMP effect(s) appeared to function as a priming signal because addition of cAMP agonists was required either before or early during the onset of infection. However, absolute cAMP levels measured by ELISA were not predictive of cAMP-priming effects. Importantly, inhibition of de novo cAMP synthesis decreased the number of lung endothelial cells with activated caspase-1 during infection. Collectively, our data suggest that lung endothelial cells rely on cAMP signaling to prime caspase-1 activation during P. aeruginosa infection.


Assuntos
Caspase 1/genética , AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , 1-Metil-3-Isobutilxantina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Caspase 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/agonistas , AMP Cíclico/antagonistas & inibidores , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Dinoprostona/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Cultura Primária de Células , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ratos , Rolipram/farmacologia , Análise de Célula Única
16.
Artigo em Inglês | MEDLINE | ID: mdl-34035557

RESUMO

Förster resonance energy transfer (FRET) is a valuable tool for measuring molecular distances and the effects of biological processes such as cyclic nucleotide messenger signaling and protein localization. Most FRET techniques require two fluorescent proteins with overlapping excitation/emission spectral pairing to maximize detection sensitivity and FRET efficiency. FRET microscopy often utilizes differing peak intensities of the selected fluorophores measured through different optical filter sets to estimate the FRET index or efficiency. Microscopy platforms used to make these measurements include wide-field, laser scanning confocal, and fluorescence lifetime imaging. Each platform has associated advantages and disadvantages, such as speed, sensitivity, specificity, out-of-focus fluorescence, and Z-resolution. In this study, we report comparisons among multiple microscopy and spectral filtering platforms such as standard 2-filter FRET, emission-scanning hyperspectral imaging, and excitation-scanning hyperspectral imaging. Samples of human embryonic kidney (HEK293) cells were grown on laminin-coated 28 mm round gridded glass coverslips (10816, Ibidi, Fitchburg, Wisconsin) and transfected with adenovirus encoding a cAMP-sensing FRET probe composed of a FRET donor (Turquoise) and acceptor (Venus). Additionally, 3 FRET "controls" with fixed linker lengths between Turquoise and Venus proteins were used for inter-platform validation. Grid locations were logged, recorded with light micrographs, and used to ensure that whole-cell FRET was compared on a cell-by-cell basis among the different microscopy platforms. FRET efficiencies were also calculated and compared for each method. Preliminary results indicate that hyperspectral methods increase the signal-to-noise ratio compared to a standard 2-filter approach.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34045781

RESUMO

Ca2+ and cAMP are ubiquitous second messengers known to differentially regulate a variety of cellular functions over a wide range of timescales. Studies from a variety of groups support the hypothesis that these signals can be localized to discrete locations within cells, and that this subcellular localization is a critical component of signaling specificity. However, to date, it has been difficult to track second messenger signals at multiple locations within a single cell. This difficulty is largely due to the inability to measure multiplexed florescence signals in real time. To overcome this limitation, we have utilized both emission scan- and excitation scan-based hyperspectral imaging approaches to track second messenger signals as well as labeled cellular structures and/or proteins in the same cell. We have previously reported that hyperspectral imaging techniques improve the signal-to-noise ratios of both fluorescence and FRET measurements, and are thus well suited for the measurement of localized second messenger signals. Using these approaches, we have measured near plasma membrane and near nuclear membrane cAMP signals, as well as distributed signals within the cytosol, in several cell types including airway smooth muscle, pulmonary endothelial, and HEK-293 cells. We have also measured cAMP and Ca2+ signals near autofluorescent structures that appear to be golgi. Our data demonstrate that hyperspectral imaging approaches provide unique insight into the spatial and kinetic distributions of cAMP and Ca2+ signals in single cells.

18.
Cytometry A ; 93(10): 1029-1038, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30176184

RESUMO

Cyclic AMP is a ubiquitous second messenger that orchestrates a variety of cellular functions over different timescales. The mechanisms underlying specificity within this signaling pathway are still not well understood. Several lines of evidence suggest the existence of spatial cAMP gradients within cells, and that compartmentalization underlies specificity within the cAMP signaling pathway. However, to date, no studies have visualized cAMP gradients in three spatial dimensions (3D: x, y, z).This is in part due to the limitations of FRET-based cAMP sensors, specifically the low signal-to-noise ratio intrinsic to all intracellular FRET probes. Here, we overcome this limitation, at least in part, by implementing spectral imaging approaches to estimate FRET efficiency when multiple fluorescent labels are used and when signals are measured from weakly expressed fluorescent proteins in the presence of background autofluorescence and stray light. Analysis of spectral image stacks in two spatial dimensions (2D) from single confocal slices indicates little or no cAMP gradients formed within pulmonary microvascular endothelial cells (PMVECs) under baseline conditions or following 10 min treatment with the adenylyl cyclase activator forskolin. However, analysis of spectral image stacks in 3D demonstrates marked cAMP gradients from the apical to basolateral face of PMVECs. Results demonstrate that spectral imaging approaches can be used to assess cAMP gradients-and in general gradients in fluorescence and FRET-within intact cells. Results also demonstrate that 2D imaging studies of localized fluorescence signals and, in particular, cAMP signals, whether using epifluorescence or confocal microscopy, may lead to erroneous conclusions about the existence and/or magnitude of gradients in either FRET or the underlying cAMP signals. Thus, with the exception of cellular structures that can be considered in one spatial dimension, such as neuronal processes, 3D measurements are required to assess mechanisms underlying compartmentalization and specificity within intracellular signaling pathways.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/instrumentação , Transferência Ressonante de Energia de Fluorescência/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Masculino , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Razão Sinal-Ruído
19.
FASEB J ; 32(7): 3832-3843, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29447005

RESUMO

Acid-sensing ion channels (ASICs) are the major proton receptor in the brain and a key mediator of acidosis-induced neuronal injuries in disease. Most of published data on ASIC function came from studies performed in mice, and relatively little is known about potential differences between human and mouse ASICs (hASIC and mASIC, respectively). This information is critical for us to better interpret the functional importance of ASICs in human disease. Here, we examined the expression of ASICs in acutely resected human cortical tissue. Compared with mouse cortex, human cortical tissue showed a similar ratio of ASIC1a:ASIC2a expression, had reduced ASIC2b level, and exhibited a higher membrane:total ratio of ASIC1a. We further investigated the mechanism for higher surface trafficking of hASIC1a in heterologous cells. A single amino acid at position 285 was critical for increased N-glycosylation and surface expression of hASIC1a. Consistent with the changes in trafficking and current, cells expressing hASIC1a or mASIC1a S285P mutant had a higher acid-activated calcium increase and exhibited worsened acidotoxicity. These data suggest that ASICs are likely to have a larger impact on acidosis-induced neuronal injuries in humans than mice, and this effect is, at least in part, a result of more efficient trafficking of hASIC1a.-Xu, Y., Jiang, Y.-Q., Li, C., He, M., Rusyniak, W. G., Annamdevula, N., Ochoa, J., Leavesley, S. J., Xu, J., Rich, T. C., Lin, M. T., Zha, X.-M. Human ASIC1a mediates stronger acid-induced responses as compared with mouse ASIC1a.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Prótons , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Potenciais de Ação , Adolescente , Adulto , Animais , Células CHO , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Cricetinae , Cricetulus , Feminino , Humanos , Ativação do Canal Iônico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , Especificidade da Espécie
20.
Artigo em Inglês | MEDLINE | ID: mdl-34054187

RESUMO

Over the past 2 decades, hyperspectral imaging technologies have been adapted to address the need for molecule-specific identification in the biomedical imaging field. Applications have ranged from single-cell microscopy to whole-animal in vivo imaging and from basic research to clinical systems. Enabling this growth has been the availability of faster, more effective hyperspectral filtering technologies and more sensitive detectors. Hence, the potential for growth of biomedical hyperspectral imaging is high, and many hyperspectral imaging options are already commercially available. However, despite the growth in hyperspectral technologies for biomedical imaging, little work has been done to aid users of hyperspectral imaging instmments in selecting appropriate analysis algorithms. Here, we present an approach for comparing the effectiveness of spectral analysis algorithms by combining experimental image data with a theoretical "what if' scenario. This approach allows us to quantify several key outcomes that characterize a hyperspectral imaging study: linearity of sensitivity, positive detection cut-off slope, dynamic range, and false positive events. We present results of using this approach for comparing the effectiveness of several common spectral analysis algorithms for detecting weak fluorescent protein emission in the midst of strong tissue autofluorescence. Results indicate that this approach should be applicable to a very wide range of applications, allowing a quantitative assessment of the effectiveness of the combined biology, hardware, and computational analysis for detecting a specific molecular signature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA