Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transl Psychiatry ; 8(1): 8, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29317601

RESUMO

Orofacial clefts (OFCs) of the lip and/or palate are among the most common human birth defects. Current treatment strategies focus on functional and cosmetic repair but even when this care is available, individuals born with OFCs are at high risk for persistent neurobehavioral problems. In addition to learning disabilities and reduced academic achievement, recent evidence associates OFCs with elevated risk for a constellation of psychiatric outcomes including anxiety disorders, autism spectrum disorder, and schizophrenia. The relationship between these outcomes and OFCs is poorly understood and controversial. Recent neuroimaging studies in humans and mice demonstrate subtle morphological brain abnormalities that co-occur with OFCs but specific molecular and cellular mechanisms have not been investigated. Here, we provide the first evidence directly linking OFC pathogenesis to abnormal development of GABAergic cortical interneurons (cINs). Lineage tracing revealed that the structures that form the upper lip and palate develop in molecular synchrony and spatiotemporal proximity to cINs, suggesting these populations may have shared sensitivity to genetic and/or teratogenic insult. Examination of cIN development in a mouse model of nonsyndromic OFCs revealed significant disruptions in cIN proliferation and migration, culminating in misspecification of the somatostatin-expressing subgroup. These findings reveal a unified developmental basis for orofacial clefting and disrupted cIN development, and may explain the significant overlap in neurobehavioral and psychiatric outcomes associated with OFCs and cIN dysfunction. This emerging mechanistic understanding for increased prevalence of adverse neurobehavioral outcomes in OFC patients is the entry-point for developing evidence-based therapies to improve patient outcomes.


Assuntos
Encéfalo/anormalidades , Fenda Labial/genética , Fenda Labial/psicologia , Fissura Palatina/genética , Fissura Palatina/psicologia , Neurônios GABAérgicos/patologia , Transtornos do Neurodesenvolvimento/etiologia , Animais , Fenda Labial/terapia , Fissura Palatina/terapia , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/psicologia
2.
Development ; 144(11): 2082-2091, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506991

RESUMO

Cleft lip is one of the most common human birth defects, yet our understanding of the mechanisms that regulate lip morphogenesis is limited. Here, we show in mice that sonic hedgehog (Shh)-induced proliferation of cranial neural crest cell (cNCC) mesenchyme is required for upper lip closure. Gene expression profiling revealed a subset of Forkhead box (Fox) genes that are regulated by Shh signaling during lip morphogenesis. During cleft pathogenesis, reduced proliferation in the medial nasal process mesenchyme paralleled the domain of reduced Foxf2 and Gli1 expression. SHH ligand induction of Foxf2 expression was dependent upon Shh pathway effectors in cNCCs, while a functional GLI-binding site was identified downstream of Foxf2 Consistent with the cellular mechanism demonstrated for cleft lip pathogenesis, we found that either SHH ligand addition or FOXF2 overexpression is sufficient to induce cNCC proliferation. Finally, analysis of a large multi-ethnic human population with cleft lip identified clusters of single-nucleotide polymorphisms in FOXF2 These data suggest that direct targeting of Foxf2 by Shh signaling drives cNCC mesenchyme proliferation during upper lip morphogenesis, and that disruption of this sequence results in cleft lip.


Assuntos
Fenda Labial/genética , Fatores de Transcrição Forkhead/genética , Proteínas Hedgehog/metabolismo , Mesoderma/patologia , Morfogênese/genética , Crista Neural/patologia , Crânio/patologia , Animais , Sítios de Ligação , Proliferação de Células , Fenda Labial/patologia , Regulação para Baixo/genética , Etnicidade/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Loci Gênicos , Humanos , Lábio/embriologia , Lábio/metabolismo , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética
3.
Neurotoxicology ; 58: 120-129, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932026

RESUMO

Cortical interneurons (cINs) are a diverse group of locally projecting neurons essential to the organization and regulation of neural networks. Though they comprise only ∼20% of neurons in the neocortex, their dynamic modulation of cortical activity is requisite for normal cognition and underlies multiple aspects of learning and memory. While displaying significant morphological, molecular, and electrophysiological variability, cINs collectively function to maintain the excitatory-inhibitory balance in the cortex by dampening hyperexcitability and synchronizing activity of projection neurons, primarily through use of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Disruption of the excitatory-inhibitory balance is a common pathophysiological feature of multiple seizure and neuropsychiatric disorders, including epilepsy, schizophrenia, and autism. While most studies have focused on genetic disruption of cIN development in these conditions, emerging evidence indicates that cIN development is exquisitely sensitive to teratogenic disruption. Here, we review key aspects of cIN development, including specification, migration, and integration into neural circuits. Additionally, we examine the mechanisms by which prenatal exposure to common chemical and environmental agents disrupt these events in preclinical models. Understanding how genetic and environmental factors interact to disrupt cIN development and function has tremendous potential to advance prevention and treatment of prevalent seizure and neuropsychiatric illnesses.


Assuntos
Córtex Cerebral/citologia , Interação Gene-Ambiente , Interneurônios/fisiologia , Transtornos Mentais , Convulsões , Pesquisa Translacional Biomédica , Animais , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/genética , Transtornos Mentais/patologia , Convulsões/etiologia , Convulsões/genética , Convulsões/patologia
4.
Dis Model Mech ; 9(11): 1307-1315, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585885

RESUMO

Holoprosencephaly (HPE) is a common and severe human developmental abnormality marked by malformations of the forebrain and face. Although several genetic mutations have been linked to HPE, phenotypic outcomes range dramatically, and most cases cannot be attributed to a specific cause. Gene-environment interaction has been invoked as a premise to explain the etiological complexity of HPE, but identification of interacting factors has been extremely limited. Here, we demonstrate that mutations in Gli2, which encodes a Hedgehog pathway transcription factor, can cause or predispose to HPE depending upon gene dosage. On the C57BL/6J background, homozygous GLI2 loss of function results in the characteristic brain and facial features seen in severe human HPE, including midfacial hypoplasia, hypotelorism and medial forebrain deficiency with loss of ventral neurospecification. Although normally indistinguishable from wild-type littermates, we demonstrate that mice with single-allele Gli2 mutations exhibit increased penetrance and severity of HPE in response to low-dose teratogen exposure. This genetic predisposition is associated with a Gli2 dosage-dependent attenuation of Hedgehog ligand responsiveness at the cellular level. In addition to revealing a causative role for GLI2 in HPE genesis, these studies demonstrate a mechanism by which normally silent genetic and environmental factors can interact to produce severe outcomes. Taken together, these findings provide a framework for the understanding of the extreme phenotypic variability observed in humans carrying GLI2 mutations and a paradigm for reducing the incidence of this morbid birth defect.


Assuntos
Interação Gene-Ambiente , Holoprosencefalia/genética , Proteína Gli2 com Dedos de Zinco/genética , Animais , Padronização Corporal , Encéfalo/anormalidades , Encéfalo/embriologia , Encéfalo/patologia , Modelos Animais de Doenças , Face/anormalidades , Face/embriologia , Face/patologia , Feto/anormalidades , Feto/patologia , Proteínas Hedgehog/metabolismo , Heterozigoto , Holoprosencefalia/embriologia , Holoprosencefalia/patologia , Ligantes , Mutação com Perda de Função/genética , Masculino , Camundongos Endogâmicos C57BL , Teratogênicos/toxicidade , Proteína Gli2 com Dedos de Zinco/metabolismo
5.
PLoS One ; 10(3): e0120517, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793997

RESUMO

The Hedgehog (Hh) signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE), clefts of the lip with or without cleft palate (CL/P), and clefts of the secondary palate only (CPO). Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD) 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in "non-syndromic" orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug.


Assuntos
Anilidas/efeitos adversos , Fenda Labial/patologia , Fissura Palatina/patologia , Proteínas Hedgehog/antagonistas & inibidores , Holoprosencefalia/patologia , Piridinas/efeitos adversos , Transdução de Sinais , Animais , Fenda Labial/induzido quimicamente , Fenda Labial/metabolismo , Fissura Palatina/induzido quimicamente , Fissura Palatina/metabolismo , Face/anormalidades , Feminino , Proteínas Hedgehog/metabolismo , Holoprosencefalia/induzido quimicamente , Holoprosencefalia/metabolismo , Camundongos Endogâmicos C57BL , Morfogênese/efeitos dos fármacos , Fenótipo , Gravidez , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA