RESUMO
The emergence of new diseases is an urgent concern, but hosts can also vary in resistance to pathogens that are novel to them, facilitating evolutionary rescue. However, little is known about the genetic source for polymorphic resistance to novel pathogens or its relationship to defences against endemic diseases. With anther-smut disease from wild plant populations, we used selection experiments and genetic analyses to show that resistances to novel and endemic pathogens are genetically independent, despite being positively correlated in nature. Moreover, novel-pathogen resistance presented a much simpler genetic basis and more rapid response to selection. We demonstrate that polymorphic resistance to a newly introduced disease is genetically determined and not an extension of defences against the related endemic pathogen, challenging the conventional view of nonhost resistance.
Assuntos
Resistência à Doença , Doenças das Plantas , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Variação Genética , Seleção GenéticaRESUMO
Soil seedbanks are particularly important for the resiliency of species living in habitats threatened by climate change, such as alpine meadows. We investigated the germination rate and seedbank potential for the endemic species Dianthus pavonius, a carnation native to the Maritime Alps that is used as model system for disease in natural populations due to its frequent infections by a sterilizing anther-smut pathogen. We aimed to ascertain whether this species can create a persistent reserve of viable seeds in the soil which could impact coevolutionary dynamics. Over three years, we collected data from seeds sown in natural soil and analyzed their germination and viability. We found that D. pavonius seeds are not physiologically dormant and they are able to create a persistent soil seed bank that can store seeds in the soil for up to three years, but lower than the estimated plant lifespan. We conclude that while the seedbank may provide some demographic stability to the host population, its short duration is unlikely to strongly affect the host's ability to respond to selection from disease. Our findings have implications for the conservation of this alpine species and for understanding the evolutionary dynamics between the host and its pathogen.
RESUMO
The anther-smut host-pathogen system has provided extensive insights into the evolutionary ecology of disease resistance, transmission modes, host shifts, pathogen specialization, and disease evolution in metapopulations. It also has led to unexpected insights into sex ratio distorters, sex chromosome evolution, and transposable elements in fungi. In addition, anther-smut disease played a major role in Linnaeus' germ theory and the correspondence on parasitic castration between Darwin and Becker, one of the first female botanists. Here, we explicitly highlight some of the realities in the process of science, using an unusual autobiographical approach to describe how we came to collaborate on this system in the 1980s. Using perspectives from our different career stages, we present a surprising narrative that could not be deduced from merely reading the published papers. While our work was grounded in previous ecological and evolutionary theory, it was the product as much of empirical failures and intellectual roadblocks, as the result of a progressive scientific method. Our experiences illustrate not only the "human dimension of science" but more importantly show that linear sequences of hypothesis testing do not necessarily lead to new study systems and new ideas. We suggest there is a need to re-evaluate the scientific method in ecology and evolution, especially where the challenge is to engage in a productive dialog between natural history and theory.
RESUMO
Genetic variation for disease resistance within host populations can strongly impact the spread of endemic pathogens. In plants, recent work has shown that within-population variation in resistance can also affect the transmission of foreign spillover pathogens if that resistance is general. However, most hosts also possess specific resistance mechanisms that provide strong defenses against coevolved endemic pathogens. Here we use a modeling approach to ask how antagonistic coevolution between hosts and their endemic pathogen at the specific resistance locus can affect the frequency of general resistance, and therefore a host's vulnerability to foreign pathogens. We develop a two-locus model with variable recombination that incorporates both general resistance (effective against all pathogens) and specific resistance (effective against endemic pathogens only). With coevolution, when pathogens can evolve to evade specific resistance, we find that the regions where general resistance can evolve are greatly expanded, decreasing the risk of foreign pathogen invasion. Furthermore, coevolution greatly expands the conditions that maintain polymorphisms at both resistance loci, thereby driving greater genetic diversity within host populations. This genetic diversity often leads to positive correlations between host resistance to foreign and endemic pathogens, similar to those observed in natural populations. However, if resistance loci become linked, the resistance correlations can shift to negative. If we include a third linkage-modifying locus in our model, we find that selection often favors complete linkage. Our model demonstrates how coevolutionary dynamics with an endemic pathogen can mold the resistance structure of host populations in ways that affect its susceptibility to foreign pathogen spillovers, and that the nature of these outcomes depends on resistance costs, as well as the degree of linkage between resistance genes.
RESUMO
The evolution of disease resistances is an expected feature of plant-pathogen systems, but whether the genetics of this trait most often produces qualitative or quantitative phenotypic variation is a significant gap in our understanding of natural populations. These two forms of resistance variation are often associated with differences in number of underlying loci, the specificities of host-pathogen coevolution, as well as contrasting mechanisms of preventing or slowing the infection process. Anther-smut disease is a commonly studied model for disease of wild species, where infection has severe fitness impacts, and prior studies have suggested resistance variation in several host species. However, because the outcome of exposing the individual host to this pathogen is binary (healthy or diseased), resistance has been previously measured at the family level, as the proportion of siblings that become diseased. This leaves uncertain whether among-family variation reflects contrasting ratios of segregating discrete phenotypes or continuous trait variation among individuals. In the host Silene vulgaris, plants were replicated by vegetative propagation in order to quantify the infection rates of the individual genotype with the endemic anther-smut pathogen, Microbotryum silenes-inflatae. The variance among field-collected families for disease resistance was significant, while there was unimodal continuous variation in resistance among genotypes. Using crosses between genotypes within ranked resistance quartiles, the offspring infection rate was predicted by the parental resistance values. While the potential remains in this system for resistance genes having major effects, as there were suggestions of such qualitative resistance in a prior study, here the quantitative disease resistance to the endemic anther-smut pathogen is indicated for S. vulgaris. The variation in natural populations and strong heritability of the trait, combined with severe fitness consequences of anther-smut disease, suggests that resistance in these host populations is highly capable of responding to disease-induced selection.
RESUMO
Genetic variation for disease resistance within host populations can strongly impact the spread of endemic pathogens. In plants, recent work has shown that within-population variation in resistance can also affect the transmission of foreign spillover pathogens if that resistance is general. However, most hosts also possess specific resistance mechanisms that provide strong defenses against coevolved endemic pathogens. Here we use a modeling approach to ask how antagonistic coevolution between hosts and their endemic pathogen at the specific resistance locus can affect the frequency of general resistance, and therefore a host's vulnerability to foreign pathogens. We develop a two-locus model with variable recombination that incorporates both general (resistance to all pathogens) and specific (resistance to endemic pathogens only). We find that introducing coevolution into our model greatly expands the regions where general resistance can evolve, decreasing the risk of foreign pathogen invasion. Furthermore, coevolution greatly expands which conditions maintain polymorphisms at both resistance loci, thereby driving greater genetic diversity within host populations. This genetic diversity often leads to positive correlations between host resistance to foreign and endemic pathogens, similar to those observed in natural populations. However, if resistance loci become linked, the resistance correlations can shift to negative. If we include a third, linkage modifying locus into our model, we find that selection often favors complete linkage. Our model demonstrates how coevolutionary dynamics with an endemic pathogen can mold the resistance structure of host populations in ways that affect its susceptibility to foreign pathogen spillovers, and that the nature of these outcomes depends on resistance costs, as well as the degree of linkage between resistance genes.
RESUMO
Host-shifts, where pathogens jump from an ancestral host to a novel host, can be facilitated or impeded by standing variation in disease resistance, but only if resistance provides broad-spectrum general resistance against multiple pathogen species. Host resistance comes in many forms and includes both general resistance, as well as specific resistance, which may only be effective against a single pathogen species or even genotype. However, most evolutionary models consider only one of these forms of resistance, and we have less understanding of how these two forms of resistance evolve in tandem. Here, we develop a model that allows for the joint evolution of specific and general resistance and asks if the evolution of specific resistance drives a decrease in the evolution of general resistance. We also explore how these evolutionary outcomes affect the risk of foreign pathogen invasion and persistence. We show that in the presence of a single endemic pathogen, the two forms of resistance are strongly exclusionary. Critically, we find that specific resistance polymorphisms can prevent the evolution of general resistance, facilitating the invasion of foreign pathogens. We also show that specific resistance polymorphisms are a necessary condition for the successful establishment of foreign pathogens following invasion, as they prevent the exclusion of the foreign pathogen by the more transmissible endemic pathogen. Our results demonstrate the importance of considering the joint evolution of multiple forms of resistance when evaluating a population's susceptibility to foreign pathogens.
Assuntos
Evolução Biológica , Resistência à Doença , Humanos , Resistência à Doença/genética , Genótipo , Interações Hospedeiro-Patógeno/genéticaRESUMO
Theoretical models suggest that infectious diseases could play a substantial role in determining the spatial extent of host species, but few studies have collected the empirical data required to test this hypothesis. Pathogens that sterilize their hosts or spread through frequency-dependent transmission could have especially strong effects on the limits of species' distributions because diseased hosts that are sterilized but not killed may continue to produce infectious stages and frequency-dependent transmission mechanisms are effective even at very low population densities. We collected spatial pathogen prevalence data and population abundance data for alpine carnations infected by the sterilizing pathogen Microbotryum dianthorum, a parasite that is spread through both frequency-dependent (vector-borne) and density-dependent (aerial spore transmission) mechanisms. Our 13-year study reveals rapid declines in population abundance without a compensatory decrease in pathogen prevalence. We apply a stochastic, spatial model of parasite spread that accommodates spatial habitat heterogeneity to investigate how the population dynamics depend on multimodal (frequency-dependent and density-dependent) transmission. We found that the observed rate of population decline could plausibly be explained by multimodal transmission, but is unlikely to be explained by either frequency-dependent or density-dependent mechanisms alone. Multimodal pathogen transmission rates high enough to explain the observed decline predicted that eventual local extinction of the host species is highly likely. Our results add to a growing body of literature showing how multimodal transmission can constrain species distributions in nature.
Assuntos
Ecossistema , Modelos Teóricos , Animais , Dinâmica PopulacionalRESUMO
Pathogen transmission mode is a key determinant of epidemiological outcomes. Theory shows that host density can influence the spread of pathogens differentially depending on their mode of transmission. Host density could therefore play an important role in determining the pathogen transmission mode. We tested theoretical expectations using floral arrays of the alpine carnation Dianthus pavonius in field experiments of spore dispersal of the anther-smut fungus, Microbotryum, by vector (pollinator)-based floral transmission and passive aerial transmission at a range of host densities. Pollinators deposited fewer spores per plant at high host density than at lower density (ranging from a 0.2-2 m spacing between plants), and vector-based spore deposition at higher densities declined more steeply with distance from diseased plant sources. In contrast, while aerial spore deposition declined with distance from the diseased source, the steepness of this decline was independent of host density. Our study indicates that the amount and distance of vector-based transmission are likely to be a nonmonotonic function of host density as a result of vector behavior, which is not readily encapsulated by fixed dispersal functions. We conclude that the spatial spread of pathogens by vectors is likely to be greater at lower and intermediate densities, whereas the spatial spread of aerially transmitted pathogens would be greater at high densities. These contrasting patterns could lead to differential importance of each transmission mode in terms of its contribution to subsequent infections across host densities.
Assuntos
Basidiomycota , Dianthus , Reprodução , Dianthus/microbiologia , Plantas , Doenças das PlantasRESUMO
Juveniles are typically less resistant (more susceptible) to infectious disease than adults, and this difference in susceptibility can help fuel the spread of pathogens in age-structured populations. However, evolutionary explanations for this variation in resistance across age remain to be tested.One hypothesis is that natural selection has optimized resistance to peak at ages where disease exposure is greatest. A central assumption of this hypothesis is that hosts have the capacity to evolve resistance independently at different ages. This would mean that host populations have (a) standing genetic variation in resistance at both juvenile and adult stages, and (b) that this variation is not strongly correlated between age classes so that selection acting at one age does not produce a correlated response at the other age.Here we evaluated the capacity of three wild plant species (Silene latifolia, S. vulgaris and Dianthus pavonius) to evolve resistance to their anther-smut pathogens (Microbotryum fungi), independently at different ages. The pathogen is pollinator transmitted, and thus exposure risk is considered to be highest at the adult flowering stage.Within each species we grew families to different ages, inoculated individuals with anther smut, and evaluated the effects of age, family and their interaction on infection.In two of the plant species, S. latifolia and D. pavonius, resistance to smut at the juvenile stage was not correlated with resistance to smut at the adult stage. In all three species, we show there are significant age × family interaction effects, indicating that age specificity of resistance varies among the plant families. Synthesis. These results indicate that different mechanisms likely underlie resistance at juvenile and adult stages and support the hypothesis that resistance can evolve independently in response to differing selection pressures as hosts age. Taken together our results provide new insight into the structure of genetic variation in age-dependent resistance in three well-studied wild host-pathogen systems.
RESUMO
AbstractReciprocal selection promotes the specificity of host-pathogen associations and resistance polymorphisms in response to disease. However, plants and animals also vary in response to pathogen species not previously encountered in nature, with potential effects on new disease emergence. Using anther smut disease, we show that resistance (measured as infection rates) to foreign pathogens can be correlated with standing variation in resistance to an endemic pathogen. In Silene vulgaris, genetic variation in resistance to its endemic anther smut pathogen correlated positively with resistance variation to an anther smut pathogen from another host, but the relationship was negative between anther smut and a necrotrophic pathogen. We present models describing the genetic basis for assessing resistance relationships between endemic and foreign pathogens and for quantifying infection probabilities on foreign pathogen introduction. We show that even when the foreign pathogen has a lower average infection ability than the endemic pathogen, infection outcomes are determined by the sign and strength of the regression of the host's genetic variation in infection rates by a foreign pathogen on variation in infection rates by an endemic pathogen as well as by resistance allele frequencies. Given that preinvasion equilibria of resistance are determined by factors including resistance costs, we show that protection against foreign pathogens afforded by positively correlated resistances can be lessened or even result in elevated infection risk at the population level, depending on local dynamics. Therefore, a pathogen's emergence potential could be influenced not only by its average infection rate but also by resistance variation resulting from prior selection imposed by endemic diseases.
Assuntos
Basidiomycota , Silene , Doenças das Plantas/genética , Polimorfismo Genético , Silene/genéticaRESUMO
Determining the processes that drive the evolution of pathogen host range can inform our understanding of disease dynamics and the potential for host shifts. In natural populations, patterns of host range could be driven by genetically based differences in pathogen infectivity or ecological differences in host availability. In northwestern Italy, four reproductively isolated lineages of the fungal plant-pathogen Microbotryum have been shown to co-occur on several species in the genus Dianthus. We carried out cross-inoculation experiments to determine whether patterns of realized host range in these four lineages were driven by differences in infectivity and to test whether there was evidence of a trade-off between host range and within-host reproduction. We found strong concordance between field patterns of host range and pathogen infectivity on different Dianthus species using experimental inoculation, indicating that infection ability is a major driving force of host range. However, we found no evidence of a trade-off between the ability to infect a wider range of host species and spore production on a shared host.
Assuntos
Basidiomycota , Dianthus , Basidiomycota/genética , Dianthus/genética , Especificidade de Hospedeiro , Doenças das Plantas , PlantasRESUMO
Vector-borne diseases threaten human and agricultural health and are a critical component of the ecology of plants and animals. While previous studies have shown that pathogen spread can be affected by vector preferences for host infection status, less attention has been paid to vector preference for host sex, despite abundant evidence of sex-specific variation in disease burden. We investigated vector preference for host infection status and sex in the sterilizing "anther-smut" pathogen (Microbotryum) of the alpine carnation, Dianthus pavonius. The pathogen is transferred among hosts by pollinators that visit infected flowers and become contaminated with spores produced by infected anthers. The host plant has a mixed breeding system with hermaphrodites and females. In experimental floral arrays, pollinators strongly preferred healthy hermaphrodites over both females and diseased plants, consistently across different guilds of pollinators and over multiple years. Using an agent-based model, we showed that pollinator preferences for sex can affect pathogen spread in populations with variable sex ratios, even if there is no preference for infection status. Our results demonstrate that vector preferences for host traits other than infection status can play a critical role in pathogen transmission dynamics when there is heterogeneity for those traits in the host population.
Assuntos
Basidiomycota , Dianthus , Animais , Flores , Humanos , Doenças das Plantas , Plantas , Razão de MasculinidadeRESUMO
Behavioural resistance to parasites is widespread in animals, yet little is known about the evolutionary dynamics that have shaped these strategies. We show that theory developed for the evolution of physiological parasite resistance can only be applied to behavioural resistance under limited circumstances. We find that accounting explicitly for the behavioural processes, including the detectability of infected individuals, leads to novel dynamics that are strongly dependent on the nature of the costs and benefits of social interactions. As with physiological resistance, evolutionary dynamics of behavioural resistance can also lead to mixed strategies that balance these costs and benefits.
Assuntos
Interações Hospedeiro-Parasita , Parasitos , Animais , Evolução Biológica , HumanosRESUMO
A recent study by Sugiura and coworkers reported the non-symbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology.
Assuntos
Glomeromycota , Micorrizas , Ecossistema , Fungos , Miristatos , Ácido Mirístico , Raízes de Plantas , SimbioseRESUMO
Species interactions and diversity are strongly impacted by local processes, with both the density of a focal species and its frequency in the community having an impact on its growth, survival and fecundity. Yet, studies that attempt to control for variation in both frequency and density have traditionally required a large number of replicates.Hexagonal fan designs can include a range of both densities and frequencies in a single plot, providing large economies in space and material for studying local interactions such as competition and disease transmission. However, in practice such experiments can be difficult to plan and implement.This study presents an R program whereby the user can rapidly view a variety of designs and determine the configurations that work best with their space and material constraints. Simple instructions for implementing the fan in any design setting are also provided.We illustrate the implementation of a simple form of the hexagonal fan design in a field experiment to assess the impact of host density on pollinator movement and disease transmission.
RESUMO
Awareness that our planet is a self-supporting biosphere with sunlight as its major source of energy for life has resulted in a long-term historical fascination with the workings of self-supporting ecological systems. However, the studies of such systems have never entered the canon of ecological or evolutionary tools and instead, have led a fringe existence connected to life support system engineering and space travel. We here introduce a framework for a renaissance in biospherics based on the study of matter-closed, energy-open ecosystems at a microbial level (microbial biospherics). Recent progress in genomics, robotics, and sensor technology makes the study of closed systems now much more tractable than in the past, and we argue that the time has come to emancipate the study of closed systems from this fringe context and bring them into a mainstream approach for studying ecosystem processes. By permitting highly replicated long-term studies, especially on predetermined and simplified systems, microbial biospheres offer the opportunity to test and develop strong hypotheses about ecosystem function and the ecological and evolutionary determinants of long-term system failure or persistence. Unlike many sciences, ecosystem ecology has never fully embraced a reductionist approach and has remained focused on the natural world in all its complexity. We argue that a reductionist approach to ecosystem ecology, using microbial biospheres, based on a combination of theory and the replicated study of much simpler self-enclosed microsystems could pay huge dividends.
Assuntos
Ecologia/métodos , Engenharia/métodos , Microbiota/fisiologia , Atmosfera , Evolução Biológica , Planeta Terra , Sistemas Ecológicos Fechados , Ecossistema , Sistemas de Manutenção da Vida , Voo Espacial/métodos , Luz SolarRESUMO
The impact of infectious diseases in natural ecosystems is strongly influenced by the degree of pathogen specialization and by the local assemblies of potential host species. This study investigated anther-smut disease, caused by fungi in the genus Microbotryum, among natural populations of plants in the Caryophyllaceae. A broad geographic survey focused on sites of the disease on multiple host species in sympatry. Analysis of molecular identities for the pathogens revealed that sympatric disease was most often due to co-occurrence of distinct, host-specific anther-smut fungi, rather than localized cross-species disease transmission. Flowers from sympatric populations showed that the Microbotryum spores were frequently moved between host species. Experimental inoculations to simulate cross-species exposure to the pathogens in these plant communities showed that the anther-smut pathogen was less able to cause disease on its regular host when following exposure of the plants to incompatible pathogens from another host species. These results indicate that multi-host/multi-pathogen communities are common in this system and they involve a previously hidden mechanism of interference between Microbotryum fungi, which likely affects both pathogen and host distributions.
RESUMO
In flowering plants, the evolution of females is widely hypothesized to be the first step in the evolutionary pathway to separate male and female sexes, or dioecy. Natural enemies have the potential to drive this evolution if they preferentially attack hermaphrodites over females. We studied sex-based differences in exposure to anther-smut (Microbotryum), a sterilizing pollinator-transmitted disease, in Dianthus pavonius, a gynodioecious perennial herb. We found that within a heavily diseased population, females consistently had lower levels of Microbotryum spore deposition relative to hermaphrodites and that this difference was driven by rapid floral closing in females following successful pollination. We further show that this protective closing behavior is frequency dependent; females close faster when they are rare. These results indicate that anther-smut disease is an important source of selection for females, especially since we found in a common garden experiment no evidence that females have any inherent fecundity advantages over hermaphrodites. Finally, we show that among populations, those where anther-smut is present have a significantly higher frequency of females than those where the disease is absent. Taken together our results indicate that anther-smut disease is likely an important biotic factor driving the evolution and maintenance of females in this gynodioecious species.