Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell Neurosci ; 129: 103933, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663691

RESUMO

Astrocytes are in constant communication with neurons during the establishment and maturation of functional networks in the developing brain. Astrocytes release extracellular vesicles (EVs) containing microRNA (miRNA) cargo that regulates transcript stability in recipient cells. Astrocyte released factors are thought to be involved in neurodevelopmental disorders. Healthy astrocytes partially rescue Rett Syndrome (RTT) neuron function. EVs isolated from stem cell progeny also correct aspects of RTT. EVs cross the blood-brain barrier (BBB) and their cargo is found in peripheral blood which may allow non-invasive detection of EV cargo as biomarkers produced by healthy astrocytes. Here we characterize miRNA cargo and sequence motifs in healthy human astrocyte derived EVs (ADEVs). First, human induced Pluripotent Stem Cells (iPSC) were differentiated into Neural Progenitor Cells (NPCs) and subsequently into astrocytes using a rapid differentiation protocol. iPSC derived astrocytes expressed specific markers, displayed intracellular calcium transients and secreted ADEVs. miRNAs were identified by RNA-Seq on astrocytes and ADEVs and target gene pathway analysis detected brain and immune related terms. The miRNA profile was consistent with astrocyte identity, and included approximately 80 miRNAs found in astrocytes that were relatively depleted in ADEVs suggestive of passive loading. About 120 miRNAs were relatively enriched in ADEVs and motif analysis discovered binding sites for RNA binding proteins FUS, SRSF7 and CELF5. miR-483-5p was the most significantly enriched in ADEVs. This miRNA regulates MECP2 expression in neurons and has been found differentially expressed in blood samples from RTT patients. Our results identify potential miRNA biomarkers selectively sorted into ADEVs and implicate RNA binding protein sequence dependent mechanisms for miRNA cargo loading.

2.
J Pediatr Surg ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38519389

RESUMO

BACKGROUND: The severity of pulmonary hypoplasia is a main determinant of outcome for babies with congenital diaphragmatic hernia (CDH). Antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs) has been shown to rescue morphological features of lung development in the rat nitrofen model of CDH. Herein, we evaluated whether AFSC-EV administration to fetal rats with CDH is associated with neonatal improvement in lung function. METHODS: AFSC-EVs were isolated by ultracentrifugation and characterized by size, morphology, and canonical marker expression. At embryonic (E) day 9.5, dams were gavaged with olive oil (control) or nitrofen to induce CDH. At E18.5, fetuses received an intra-amniotic injection of either saline or AFSC-EVs. At E21.5, rats were delivered and subjected to a tracheostomy for mechanical ventilation (flexiVent system). Groups were compared for lung compliance, resistance, Newtonian resistance, tissue damping and elastance. Lungs were evaluated for branching morphogenesis and collagen quantification. RESULTS: Compared to healthy control, saline-treated pups with CDH had fewer airspaces, more collagen deposition, and functionally exhibited reduced compliance and increased airway resistance, elastance, and tissue damping. Conversely, AFSC-EV administration resulted in improvement of lung mechanics (compliance, resistance, tissue damping, elastance) as well as lung branching morphogenesis and collagen deposition. CONCLUSIONS: Our studies show that the rat nitrofen model reproduces lung function impairment similar to that of human babies with CDH. Antenatal administration of AFSC-EVs improves lung morphology and function in neonatal rats with CDH. LEVEL OF EVIDENCE: N/A (animal and laboratory study).

3.
Pediatr Surg Int ; 39(1): 291, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37955723

RESUMO

PURPOSE: Congenital diaphragmatic hernia (CDH) survivors may experience neurodevelopmental impairment, whose etiology remains elusive. Preclinical evidence indicates that amniotic fluid stem cell extracellular vesicle (AFSC-EV) administration promotes lung development but their effects on other organs are unknown. Herein, we investigated the brain of rat fetuses with CDH for signs of inflammation and response to AFSC-EVs. METHODS: CDH was induced by maternal nitrofen administration at E9.5. At E18.5, fetuses were injected intra-amniotically with saline or AFSC-EVs (isolated by ultracentrifugation, characterized as per MISEV guidelines). Fetuses from vehicle-gavaged dams served as controls. Groups were compared for: lung hypoplasia, TNFa and IL-1B brain expression, and activated microglia (Iba1) density in the subgranular zone (SGZ). RESULTS: CDH lungs had fewer airspaces compared to controls, whereas AFSC-EV-treated lungs had rescued branching morphogenesis. Fluorescently labeled AFSC-EVs injected intra-amniotically into CDH fetuses had fluorescent signal in the brain. Compared to controls, the brain of CDH fetuses had higher TNFa and IL-1B levels, and increased activated microglia density. Conversely, the brain of AFSC-EV treated fetuses had inflammatory marker expression levels and microglia density similar to controls. CONCLUSION: This study shows that the brain of rat fetuses with CDH has signs of inflammation that are abated by the intra-amniotic administration of AFSC-EVs.


Assuntos
Vesículas Extracelulares , Hérnias Diafragmáticas Congênitas , Feminino , Gravidez , Animais , Ratos , Encéfalo , Líquido Amniótico , Inflamação , Anti-Inflamatórios
4.
Pediatr Surg Int ; 39(1): 296, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981587

RESUMO

PURPOSE: Lineage tracing is key to study the fate of individual cells and their progeny especially in developmental biology. To conduct these studies, we aimed to establish a reproducible model of CDH in the most commonly used genetic background strain that is C57BL/6J mice. METHODS: CDH was induced in C57BL/6J dams by maternal administration of nitrofen + bisdiamine at E8.5. Fetuses from olive oil-gavaged mothers served as controls. Lungs from CDH and control fetuses were compared for (1) growth via radial airspace count (RAC), mean linear intercept (MLI) and gene expression for Fgf10, Nrp1, and Ctnnb1; (2) maturation (Pdpn, Spc, Ager, Abca3, Eln, Acta2, Pdgfra) via gene and protein expression; (3) vascularization via gene and protein expression (CD31, Vegfa, Vegfr1/2, Epas1, Enos). STATISTICS: unpaired t-test or Mann-Whitney test. RESULTS: Nitrofen + bisdiamine administration resulted in 36% left-sided CDH (31% mortality). CDH fetuses had hypoplastic lungs and impaired growth (lower RAC, higher MLI, lower Fgf10, Nrp1, Ctnnb1), maturation (decreased Pdpn, Ager, Eln gene expression), and vascularization (decreased Cd31, Vegfr1/2; Epas1 and Enos). Lower protein expression was confirmed for PDPN, ELN and CD31. CONCLUSION: Modeling CDH in C57BL/6J mouse fetuses is effective in reproducing the classical CDH hallmarks. This model will be critical for lineage tracing experiments.


Assuntos
Hérnias Diafragmáticas Congênitas , Camundongos , Animais , Humanos , Feminino , Gravidez , Camundongos Endogâmicos C57BL , Hérnias Diafragmáticas Congênitas/genética , Feto , Cuidado Pré-Natal , Fatores de Transcrição
5.
Pediatr Surg Int ; 39(1): 194, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160490

RESUMO

Congenital diaphragmatic hernia (CDH) is a birth defect characterized by the incomplete closure of the diaphragm and herniation of abdominal organs into the chest during gestation. This invariably leads to an impairment in fetal lung development (pulmonary hypoplasia) that involves the pulmonary vessels (vascular remodeling) leading to postnatal pulmonary hypertension. Moreover, approximately 60% of CDH survivors have long-term comorbidities, including critical cardiac anomalies, neurodevelopmental impairment, gastroesophageal reflux, and musculoskeletal malformations. While the pathophysiology of the diaphragmatic defect and pulmonary hypoplasia have been studied in detail over the decades, less is known about the other organs affected in CDH. In this review, we searched the literature for reports on other organs beyond the lung and diaphragm in human and experimental models of CDH. We found studies reporting gross morphometric changes and alterations to biological pathways in the heart, brain, liver, kidney, gastrointestinal tract, and musculoskeletal system. Given the paucity of literature and the importance that these comorbidities play in the life of patients with CDH, further studies are needed to comprehensively uncover the pathophysiology of the changes observed in these other organs.


Assuntos
Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Humanos , Diafragma , Fígado , Pulmão
6.
Eur J Pediatr Surg ; 33(1): 11-16, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35858641

RESUMO

INTRODUCTION: The etiology of congenital diaphragmatic hernia (CDH) remains unknown and only 10 to 30% of patients have a genetic cause. Seasonal variation is known to contribute to the development of some congenital anomalies. Our aim was to investigate whether CDH births have seasonal variation. MATERIALS AND METHODS: A literature review was conducted for CDH and seasonality. Moreover, data from the CDH International Patient Registry Database were collected for infants with due dates between 2008 and 2014. Due dates were used to determine seasonal distribution of births. Birth rates per month in the United States and Canada were extracted from publicly available databases. Data were analyzed using analysis of variance and contingency tables. RESULTS: First, the literature review revealed 11 articles, of which 3 were eligible for inclusion. These studies reported conflicting results on seasonality of CDH. Second, we extracted due dates from the CDH International Patient Registry Database (1,259 patients) and found that there were fewer due dates in winter months (12.1 ± 4 patients/month) than in summer (16.7 ± 6 patients/month; p = 0.011) and fall months (16.3 ± 5 patients/month; p = 0.022). Although this trend was similar to that of all births in the United States and Canada, a lower incidence was observed in winter for CDH infants (20.2%) than for the general population (24.1%, p = 0.0012). CDH survival rate did not vary by season. CONCLUSION: This study provides evidence for a seasonal variation of CDH births. No causative link was established between CDH development and seasonality. Population-based studies with a focus on exposome data are needed to explain seasonal variation in CDH.


Assuntos
Anormalidades Múltiplas , Hérnias Diafragmáticas Congênitas , Lactente , Humanos , Estados Unidos/epidemiologia , Hérnias Diafragmáticas Congênitas/epidemiologia , Hérnias Diafragmáticas Congênitas/etiologia , Estações do Ano , Anormalidades Múltiplas/epidemiologia , Incidência , Canadá/epidemiologia
7.
Semin Pediatr Surg ; 31(6): 151228, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36442455

RESUMO

Congenital lung malformations comprise a diverse group of anomalies including congenital pulmonary airway malformation (CPAM, previously known as congenital cystic adenomatoid malformation or CCAM), bronchopulmonary sequestration (BPS), congenital lobar emphysema (CLE), bronchogenic cysts, and hybrid lesions. Little is known about the signaling pathways that underlie the pathophysiology of these lesions and the processes that may promote their malignant transformation. In the last decade, the use of transgenic/knockout animal models and the implementation of next generation sequencing on surgical lung specimens have increased our knowledge on the pathophysiology of these lesions. Herein, we provide an overview of normal lung development in humans and rodents, and we discuss the current state of knowledge on the pathophysiology and molecular pathways that are altered in each congenital lung malformation.


Assuntos
Sequestro Broncopulmonar , Malformação Adenomatoide Cística Congênita do Pulmão , Pneumopatias , Anormalidades do Sistema Respiratório , Animais , Humanos , Malformação Adenomatoide Cística Congênita do Pulmão/diagnóstico , Pulmão/anormalidades , Anormalidades do Sistema Respiratório/diagnóstico , Anormalidades do Sistema Respiratório/genética , Transdução de Sinais
8.
Stem Cells Transl Med ; 11(10): 1089-1102, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36103370

RESUMO

Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by impaired branching morphogenesis and differentiation. We have previously demonstrated that administration of extracellular vesicles derived from rat amniotic fluid stem cells (AFSC-EVs) rescues development of hypoplastic lungs at the pseudoglandular and alveolar stages in rodent models of CDH. Herein, we tested whether AFSC-EVs exert their regenerative effects at the canalicular and saccular stages, as these are translationally relevant for clinical intervention. To induce fetal pulmonary hypoplasia, we gavaged rat dams with nitrofen at embryonic day 9.5 and demonstrated that nitrofen-exposed lungs had impaired branching morphogenesis, dysregulated signaling pathways relevant to lung development (FGF10/FGFR2, ROBO/SLIT, Ephrin, Neuropilin 1, ß-catenin) and impaired epithelial and mesenchymal cell marker expression at both stages. AFSC-EVs administered to nitrofen-exposed lung explants rescued airspace density and increased the expression levels of key factors responsible for branching morphogenesis. Moreover, AFSC-EVs rescued the expression of alveolar type 1 and 2 cell markers at both canalicular and saccular stages and restored markers of club, ciliated epithelial, and pulmonary neuroendocrine cells at the saccular stage. AFSC-EV-treated lungs also had restored markers of lipofibroblasts and PDGFRA+ cells to control levels at both stages. EV tracking showed uptake of AFSC-EV RNA cargo throughout the fetal lung and an mRNA-miRNA network analysis identified that several miRNAs responsible for regulating lung development processes were contained in the AFSC-EV cargo. These findings suggest that AFSC-EV-based therapies hold potential for restoring fetal lung growth and maturation in babies with pulmonary hypoplasia secondary to CDH.


Assuntos
Vesículas Extracelulares , Hérnias Diafragmáticas Congênitas , MicroRNAs , Ratos , Animais , Hérnias Diafragmáticas Congênitas/metabolismo , beta Catenina/metabolismo , Líquido Amniótico/metabolismo , Neuropilina-1/metabolismo , Ratos Sprague-Dawley , Pulmão/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , RNA Mensageiro/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Efrinas/metabolismo , Modelos Animais de Doenças
9.
Nat Rev Dis Primers ; 8(1): 37, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650272

RESUMO

Congenital diaphragmatic hernia (CDH) is a rare birth defect characterized by incomplete closure of the diaphragm and herniation of fetal abdominal organs into the chest that results in pulmonary hypoplasia, postnatal pulmonary hypertension owing to vascular remodelling and cardiac dysfunction. The high mortality and morbidity rates associated with CDH are directly related to the severity of cardiopulmonary pathophysiology. Although the aetiology remains unknown, CDH has a polygenic origin in approximately one-third of cases. CDH is typically diagnosed with antenatal ultrasonography, which also aids in risk stratification, alongside fetal MRI and echocardiography. At specialized centres, prenatal management includes fetal endoscopic tracheal occlusion, which is a surgical intervention aimed at promoting lung growth in utero. Postnatal management focuses on cardiopulmonary stabilization and, in severe cases, can involve extracorporeal life support. Clinical practice guidelines continue to evolve owing to the rapidly changing landscape of therapeutic options, which include pulmonary hypertension management, ventilation strategies and surgical approaches. Survivors often have long-term, multisystem morbidities, including pulmonary dysfunction, gastroesophageal reflux, musculoskeletal deformities and neurodevelopmental impairment. Emerging research focuses on small RNA species as biomarkers of severity and regenerative medicine approaches to improve fetal lung development.


Assuntos
Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Endoscopia , Feminino , Hérnias Diafragmáticas Congênitas/diagnóstico , Hérnias Diafragmáticas Congênitas/cirurgia , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Pulmão/anormalidades , Pulmão/diagnóstico por imagem , Gravidez , Ultrassonografia Pré-Natal/efeitos adversos
10.
Am J Respir Crit Care Med ; 206(4): 476-487, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671495

RESUMO

Rationale: Pulmonary hypoplasia secondary to congenital diaphragmatic hernia is characterized by reduced branching morphogenesis, which is responsible for poor clinical outcomes. Administration of amniotic fluid stem cell extracellular vesicles (AFSC-EVs) rescues branching morphogenesis in rodent fetal models of pulmonary hypoplasia. Herein, we hypothesized that AFSC-EVs exert their regenerative potential by affecting autophagy, a process required for normal lung development. Objectives: To evaluate autophagy in hypoplastic lungs throughout gestation and establish whether AFSC-EV administration improves branching morphogenesis through autophagy-mediated mechanisms. Methods: EVs were isolated from c-kit+ AFSC-conditioned medium by ultracentrifugation and characterized for size, morphology, and EV markers. Branching morphogenesis was inhibited in rat fetuses by nitrofen administration to dams and in human fetal lung explants by blocking RAC1 activity with NSC23766. The expression of autophagy activators (BECN1 and ATG5) and adaptor (SQSTM1/p62) was analyzed in vitro (rat and human fetal lung explants) and in vivo (rat fetal lungs). Mechanistic studies on rat fetal primary lung epithelial cells were conducted using inhibitors for microRNA-17 and -20a contained in the AFSC-EV cargo and known to regulate autophagy. Measurements and Main Results: Rat and human models of fetal pulmonary hypoplasia showed reduced autophagy mainly at pseudoglandular and canalicular stages. AFSC-EV administration restored autophagy in both pulmonary hypoplasia models by transferring miR-17∼92 cluster members contained in the EV cargo. Conclusions: AFSC-EV treatment rescues branching morphogenesis partly by restoring autophagy through microRNA cargo transfer. This study enhances our understanding of pulmonary hypoplasia pathogenesis and creates new opportunities for fetal therapeutic intervention in congenital diaphragmatic hernia babies.


Assuntos
Vesículas Extracelulares , Hérnias Diafragmáticas Congênitas , MicroRNAs , Anormalidades do Sistema Respiratório , Líquido Amniótico/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
11.
Prenat Diagn ; 42(3): 364-372, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35191057

RESUMO

The poor outcomes of babies with congenital diaphragmatic hernia (CDH) are directly related to pulmonary hypoplasia, a condition characterized by impaired lung development. Although the pathogenesis of pulmonary hypoplasia is not fully elucidated, there is now evidence that CDH patients have missing or dysregulated microRNAs (miRNAs) that regulate lung development. A prenatal therapy that supplements these missing/dysregulated miRNAs could be a strategy to rescue normal lung development. Extracellular vesicles (EVs), also known as exosomes when of small dimensions, are lipid-bound nanoparticles that can transfer their heterogeneous cargo (proteins, lipids, small RNAs) to target cells to induce biological responses. Herein, we review all studies that show evidence for stem cell-derived EVs as a regenerative therapy to rescue normal development in CDH fetal lungs. Particularly, we report studies showing that administration of EVs derived from amniotic fluid stem cells (AFSC-EVs) to models of pulmonary hypoplasia promotes fetal lung growth and maturation via transfer of miRNAs that are known to regulate lung developmental processes. We also describe that stem cell-derived EVs exert effects on vascular remodeling, thus possibly preventing postnatal pulmonary hypertension. Finally, we discuss future perspectives and challenges to translate this promising stem cell EV-based therapy to clinical practice.


Assuntos
Vesículas Extracelulares , Hérnias Diafragmáticas Congênitas , MicroRNAs , Anormalidades do Sistema Respiratório , Feminino , Hérnias Diafragmáticas Congênitas/complicações , Hérnias Diafragmáticas Congênitas/patologia , Hérnias Diafragmáticas Congênitas/terapia , Humanos , Pulmão , Gravidez , Regeneração , Anormalidades do Sistema Respiratório/complicações , Células-Tronco
12.
Eur J Pediatr Surg ; 31(4): 326-334, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34161984

RESUMO

The novel coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), continues to be a major health concern. In search for novel treatment strategies against COVID-19, exosomes have attracted the attention of scientists and pharmaceutical companies worldwide. Exosomes are small extracellular vesicles, secreted by all types of cells, and considered as key mediators of intercellular communication and stem-cell paracrine signaling. Herein, we reviewed the most recent literature about the role of exosomes as potential agents for treatment, prevention, diagnosis, and pathogenesis of COVID-19. Several studies and ongoing clinical trials have been investigating the anti-inflammatory, immunomodulatory, and reparative effects of exosomes derived from mesenchymal stem/stromal cells for COVID-19-related acute lung injury. Other studies reported that exosomes play a key role in convalescent plasma therapy for COVID-19, and that they could be of use for the treatment of COVID-19 Kawasaki's-like multisystem inflammatory syndrome and as drug delivery nanocarriers for antiviral therapy. Harnessing some advantageous aspects of exosome biology, such as their endogenous origin, capability of crossing biological barriers, high stability in circulation, and low toxicity and immunogenicity, several companies have been testing exosome-based vaccines against SARS-CoV-2. As they carry cargos that mimic the status of parent cells, exosomes can be isolated from a variety of sources, including plasma, and employed as biomarkers of COVID-19. Lastly, there is growing evidence supporting the role of exosomes in COVID-19 infection, spread, reactivation, and reinfection. The lessons learned using exosomes for COVID-19 will help determine their efficacy and applicability in other clinical conditions.


Assuntos
COVID-19/terapia , Exossomos/imunologia , COVID-19/diagnóstico , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Portadores de Fármacos , Humanos , Imunização Passiva , Células-Tronco Mesenquimais/citologia , Soroterapia para COVID-19
13.
Sci Transl Med ; 13(590)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883273

RESUMO

Fetal lung underdevelopment, also known as pulmonary hypoplasia, is characterized by decreased lung growth and maturation. The most common birth defect found in babies with pulmonary hypoplasia is congenital diaphragmatic hernia (CDH). Despite research and clinical advances, babies with CDH still have high morbidity and mortality rates, which are directly related to the severity of lung underdevelopment. To date, there is no effective treatment that promotes fetal lung growth and maturation. Here, we describe a stem cell-based approach in rodents that enhances fetal lung development via the administration of extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs). Using fetal rodent models of pulmonary hypoplasia (primary epithelial cells, organoids, explants, and in vivo), we demonstrated that AFSC-EV administration promoted branching morphogenesis and alveolarization, rescued tissue homeostasis, and stimulated epithelial cell and fibroblast differentiation. We confirmed this regenerative ability in in vitro models of lung injury using human material, where human AFSC-EVs obtained following good manufacturing practices restored pulmonary epithelial homeostasis. Investigating EV mechanism of action, we found that AFSC-EV beneficial effects were exerted via the release of RNA cargo. MicroRNAs regulating the expression of genes involved in lung development, such as the miR17-92 cluster and its paralogs, were highly enriched in AFSC-EVs and were increased in AFSC-EV-treated primary lung epithelial cells compared to untreated cells. Our findings suggest that AFSC-EVs hold regenerative ability for underdeveloped fetal lungs, demonstrating potential for therapeutic application in patients with pulmonary hypoplasia.


Assuntos
Líquido Amniótico , Vesículas Extracelulares , Pulmão/embriologia , Células-Tronco , Animais , Humanos , Roedores
14.
Pediatr Surg Int ; 37(3): 301-309, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33566163

RESUMO

PURPOSE: Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease. Amniotic fluid stem cells (AFSC) improve NEC injury but human translation remains difficult. We aimed to evaluate the use of extracellular vesicles (EV) derived from human AFSC. METHODS: Human AFSC (hAFSC) were cultured according to the protocol (Celprogen Inc., California, U.S.A.). Conditioned medium was obtained, ultra-centrifuged, and EV were suspended in phosphate-buffered saline (PBS). C57BL/6 pups were grouped into: (1) breast-fed (Control, n = 11); (2) NEC + placebo (NEC + PBS; n = 10); and (3) NEC + treatment (NEC + EV; n = 11). NEC was induced post-natal days P5-9 by (A) gavage feeding hyperosmolar formula; (B) hypoxia for 10 min; and (C) lipopolysaccharide. Intra-peritoneal injections of PBS or hAFSC-EV were given on P6-7. All animals were sacrificed on P9 and terminal ileum harvested. RESULTS: hAFSC-EV administration reduced intestinal injury (p = 0.0048), NEC incidence (score ≥ 2), and intestinal inflammation (IL-6 p < 0.0001; TNF-α p < 0.0001). Intestinal stem cell expression (Lgr5 +) and cellular proliferation (Ki67) were enhanced above control levels following hAFSC-EV administration (Lgr5 p = 0.0003; Ki67 p < 0.0001). CONCLUSION: hAFSC-EV administration reduced intestinal NEC injury and inflammation while increasing stem cell expression and cellular proliferation. hAFSC-EV administration may induce similar beneficial effects to exogenous stem cells.


Assuntos
Líquido Amniótico/citologia , Enterocolite Necrosante/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Modelos Animais de Doenças , Enterocolite Necrosante/terapia , Feminino , Humanos , Íleo/metabolismo , Recém-Nascido , Doenças do Recém-Nascido , Inflamação/metabolismo , Intestinos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Nat Commun ; 12(1): 567, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495464

RESUMO

The regulatory elements controlling gene expression during acute inflammation are not fully elucidated. Here we report the identification of a set of NF-κB-bound elements and common chromatin landscapes underlying the acute inflammatory response across cell-types and mammalian species. Using primary vascular endothelial cells (human/mouse/bovine) treated with the pro-inflammatory cytokine, Tumor Necrosis Factor-α, we identify extensive (~30%) conserved orthologous binding of NF-κB to accessible, as well as nucleosome-occluded chromatin. Regions with the highest NF-κB occupancy pre-stimulation show dramatic increases in NF-κB binding and chromatin accessibility post-stimulation. These 'pre-bound' regions are typically conserved (~56%), contain multiple NF-κB motifs, are utilized by diverse cell types, and overlap rare non-coding mutations and common genetic variation associated with both inflammatory and cardiovascular phenotypes. Genetic ablation of conserved, 'pre-bound' NF-κB regions within the super-enhancer associated with the chemokine-encoding CCL2 gene and elsewhere supports the functional relevance of these elements.


Assuntos
Cromatina/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Inflamação/genética , NF-kappa B/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Doença Aguda , Animais , Sítios de Ligação/genética , Bovinos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Cromatina/metabolismo , Sequência Conservada/genética , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lógica , Camundongos , Modelos Genéticos , Ligação Proteica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
16.
Cell Death Dis ; 11(9): 750, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929076

RESUMO

Necrotizing enterocolitis (NEC) is a devastating intestinal disease primarily affecting preterm neonates and causing high morbidity, high mortality, and huge costs for the family and society. The treatment and the outcome of the disease have not changed in recent decades. Emerging evidence has shown that stimulating the Wnt/ß-catenin pathway and enhancing intestinal regeneration are beneficial in experimental NEC, and that they could potentially be used as a novel treatment. Amniotic fluid stem cells (AFSC) and AFSC-derived extracellular vesicles (EV) can be used to improve intestinal injury in experimental NEC. However, the mechanisms by which they affect the Wnt/ß-catenin pathway and intestinal regeneration are unknown. In our current study, we demonstrated that AFSC and EV attenuate NEC intestinal injury by activating the Wnt signaling pathway. AFSC and EV stimulate intestinal recovery from NEC by increasing cellular proliferation, reducing inflammation and ultimately regenerating a normal intestinal epithelium. EV administration has a rescuing effect on intestinal injury when given during NEC induction; however, it failed to prevent injury when given prior to NEC induction. AFSC-derived EV administration is thus a potential emergent novel treatment strategy for NEC.


Assuntos
Enterocolite Necrosante/genética , Vesículas Extracelulares/metabolismo , Intestinos/lesões , Via de Sinalização Wnt/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ratos
17.
J Extracell Vesicles ; 9(1): 1795365, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32944185

RESUMO

Severe COVID-19 infection results in bilateral interstitial pneumonia, often leading to acute respiratory distress syndrome (ARDS) and pulmonary fibrosis in survivors. Most patients with severe COVID-19 infections who died had developed ARDS. Currently, ARDS is treated with supportive measures, but regenerative medicine approaches including extracellular vesicle (EV)-based therapies have shown promise. Herein, we aimed to analyse whether EV-based therapies could be effective in treating severe pulmonary conditions that affect COVID-19 patients and to understand their relevance for an eventual therapeutic application to human patients. Using a defined search strategy, we conducted a systematic review of the literature and found 39 articles (2014-2020) that reported effects of EVs, mainly derived from stem cells, in lung injury models (one large animal study, none in human). EV treatment resulted in: (1) attenuation of inflammation (reduction of pro-inflammatory cytokines and neutrophil infiltration, M2 macrophage polarization); (2) regeneration of alveolar epithelium (decreased apoptosis and stimulation of surfactant production); (3) repair of microvascular permeability (increased endothelial cell junction proteins); (4) prevention of fibrosis (reduced fibrin production). These effects were mediated by the release of EV cargo and identified factors including miRs-126, -30b-3p, -145, -27a-3p, syndecan-1, hepatocyte growth factor and angiopoietin-1. This review indicates that EV-based therapies hold great potential for COVID-19 related lung injuries as they target multiple pathways and enhance tissue regeneration. However, before translating EV therapies into human clinical trials, efforts should be directed at developing good manufacturing practice solutions for EVs and testing optimal dosage and administration route in large animal models.

18.
Blood ; 136(23): 2679-2690, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32663239

RESUMO

Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder with a unique, platelet-dependent, gain-of-function defect in fibrinolysis, without systemic fibrinolysis. The hallmark feature of QPD is a >100-fold overexpression of PLAU, specifically in megakaryocytes. This overexpression leads to a >100-fold increase in platelet stores of urokinase plasminogen activator (PLAU/uPA); subsequent plasmin-mediated degradation of diverse α-granule proteins; and platelet-dependent, accelerated fibrinolysis. The causative mutation is a 78-kb tandem duplication of PLAU. How this duplication causes megakaryocyte-specific PLAU overexpression is unknown. To investigate the mechanism that causes QPD, we used epigenomic profiling, comparative genomics, and chromatin conformation capture approaches to study PLAU regulation in cultured megakaryocytes from participants with QPD and unaffected controls. QPD duplication led to ectopic interactions between PLAU and a conserved megakaryocyte enhancer found within the same topologically associating domain (TAD). Our results support a unique disease mechanism whereby the reorganization of sub-TAD genome architecture results in a dramatic, cell-type-specific blood disorder phenotype.


Assuntos
Elementos Facilitadores Genéticos , Deficiência do Fator V , Duplicação Gênica , Regulação da Expressão Gênica , Megacariócitos/metabolismo , Proteínas de Membrana , Animais , Deficiência do Fator V/genética , Deficiência do Fator V/metabolismo , Deficiência do Fator V/patologia , Feminino , Humanos , Megacariócitos/patologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Peixe-Zebra
19.
J Pediatr Surg ; 55(11): 2297-2307, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32690291

RESUMO

PURPOSE: To determine the global prevalence for congenital diaphragmatic hernia (CDH) and identify CDH-related risk factors. METHODS: Using a defined strategy, a systematic review of the literature was conducted according to PRISMA guidelines, searching for population-based epidemiological studies to evaluate the prevalence of CDH globally and per country. Studies containing overlapping populations or timeframes were excluded. CDH-related risk factors were calculated by meta-analysis using RevMan5.3 and expressed as risk ratio and 95% confidence interval. RESULTS: Prevalence: Of 8230 abstracts screened, 30 full-text articles published between 1980 and 2019 were included. The overall prevalence of CDH was 2.3 in 10,000 births (16,710 CDH babies in 73,663,758 livebirths). RISK FACTORS: From 9 studies we found that male sex [RR 1.38 (1.05-1.80), p=0.02] and maternal age >35 years [RR 1.69 (1.26-2.25), p=0.0004] were associated with CDH. Conversely, maternal black ethnicity resulted as a protective factor [RR 0.82 (0.77-0.89, p<0.00001]. CONCLUSION: This study reveals that there is a worldwide paucity of population-based studies, and those studies that report on prevalence and risk factors come from a small number of countries. The prevalence of CDH varies within and across geographical world regions. The main risk factors for CDH identified are male sex and older maternal age. More epidemiological studies, involving more world regions, are needed to identify possible strategies to help strengthen our understanding of the risk factors, provide clinicians with the tools necessary for prenatal and postnatal counseling, and inform policy makers on how to strategize CDH care in different parts of the world. TYPE OF STUDY: Systematic review and meta-analysis. LEVEL OF EVIDENCE: Level III.


Assuntos
Hérnias Diafragmáticas Congênitas , Feminino , Hérnias Diafragmáticas Congênitas/epidemiologia , Humanos , Masculino , Idade Materna , Parto , Gravidez , Prevalência , Fatores de Risco
20.
Pharmaceutics ; 11(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405234

RESUMO

Despite advances in intensive care, several neonatal conditions typically due to prematurity affect vital organs and are associated with high mortality and long-term morbidities. Current treatment strategies for these babies are only partially successful or are effective only in selected patients. Regenerative medicine has been shown to be a promising option for these conditions at an experimental level, but still warrants further exploration for the development of optimal treatment. Although stem cell-based therapy has emerged as a treatment option, studies have shown that it is associated with potential risks and hazards, especially in the fragile population of babies. Recently, extracellular vesicles (EVs) have emerged as an attractive therapeutic alternative that holds great regenerative potential and is cell-free. EVs are nanosized particles endogenously produced by cells that mediate intercellular communication through the transfer of their cargo. Currently, EVs are garnering considerable attention as they are the key effectors of stem cell paracrine signaling and can epigenetically regulate target cell genes through the release of RNA species, such as microRNA. Herein, we review the emerging literature on the therapeutic potential of EVs derived from different sources for the treatment of neonatal conditions that affect the brain, retinas, spine, lungs, and intestines and discuss the challenges for the translation of EVs into clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA