Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1624-1628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018306

RESUMO

Abdominal fat quantification is critical since multiple vital organs are located within this region. Although computed tomography (CT) is a highly sensitive modality to segment body fat, it involves ionizing radiations which makes magnetic resonance imaging (MRI) a preferable alternative for this purpose. Additionally, the superior soft tissue contrast in MRI could lead to more accurate results. Yet, it is highly labor intensive to segment fat in MRI scans. In this study, we propose an algorithm based on deep learning technique(s) to automatically quantify fat tissue from MR images through a cross modality adaptation. Our method does not require supervised labeling of MR scans, instead, we utilize a cycle generative adversarial network (C-GAN) to construct a pipeline that transforms the existing MR scans into their equivalent synthetic CT (s-CT) images where fat segmentation is relatively easier due to the descriptive nature of HU (hounsfield unit) in CT images. The fat segmentation results for MRI scans were evaluated by expert radiologist. Qualitative evaluation of our segmentation results shows average success score of 3.80/5 and 4.54/5 for visceral and subcutaneous fat segmentation in MR images*.


Assuntos
Abdome , Cavidade Abdominal , Abdome/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
2.
Front Neurosci ; 14: 409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435182

RESUMO

The success of surgical resection in epilepsy patients depends on preserving functionally critical brain regions, while removing pathological tissues. Being the gold standard, electro-cortical stimulation mapping (ESM) helps surgeons in localizing the function of eloquent cortex through electrical stimulation of electrodes placed directly on the cortical brain surface. Due to the potential hazards of ESM, including increased risk of provoked seizures, electrocorticography based functional mapping (ECoG-FM) was introduced as a safer alternative approach. However, ECoG-FM has a low success rate when compared to the ESM. In this study, we address this critical limitation by developing a new algorithm based on deep learning for ECoG-FM and thereby we achieve an accuracy comparable to ESM in identifying eloquent language cortex. In our experiments, with 11 epilepsy patients who underwent presurgical evaluation (through deep learning-based signal analysis on 637 electrodes), our proposed algorithm obtained an accuracy of 83.05% in identifying language regions, an exceptional 23% improvement with respect to the conventional ECoG-FM analysis (∼60%). Our findings have demonstrated, for the first time, that deep learning powered ECoG-FM can serve as a stand-alone modality and avoid likely hazards of the ESM in epilepsy surgery. Hence, reducing the potential for developing post-surgical morbidity in the language function.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 445-448, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440430

RESUMO

Human breath analysis plays important role for diagnosis and management of pulmonary diseases to guarantee normal health. The critical task is to distinguish normal and abnormal lung sounds. This research work presents a scheme for breath analysis used to detect irregular patterns occurred in respiratory cycles due to respiratory diseases. After de-noising breath segments using wavelet de-noising method, intrinsic mode functions are extracted with complete ensemble empirical mode decomposition (CEEMD). Instantaneous frequency (IF) and instantaneous envelope are extracted to get robust features for classification. The study contains breath samples captured using smartphone under natural setting. The data set contains 255 breath cycles. For cycle classification, Bag-of-word was applied to group segments based features. The support vector machine (SVM) was applied on randomly partitioned data samples. Experiments resulted with performance accuracy of (75.21%±2) for asthmatic inspiratory cycles and (75.5%±3%) for complete Respiratory Sounds (RS) cycle with diagnostic odds ratio (DOR) of 20.61% and 13.S7% respectively.


Assuntos
Algoritmos , Testes Respiratórios/métodos , Pneumopatias/diagnóstico , Smartphone , Acústica/instrumentação , Testes Respiratórios/instrumentação , Humanos , Sons Respiratórios , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA