Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11266-11272, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497006

RESUMO

Organic molecules that undergo supercooling can provide the basis for novel stimuli-responsive materials, but the number of such compounds is limited. Results in this paper show that the stable organic radical 2,2,6,6-tetramethyl-1-piperidine-1-oxyl (TEMPO) can form a stable supercooled liquid (SCL). Upon melting and cooling back to room temperature, the TEMPO SCL can persist for months, even after mild physical agitation. Its high vapor pressure can enable crystal growth at remote locations within the sample container over the course of days. Optical, electron paramagnetic resonance, and birefringence measurements show no evidence of new chemical species or partially ordered phases in the supercooled liquid. TEMPO's free radical character permits absorption of visible light that can drive photothermal melting to form the SCL, while a single nanosecond light pulse can initiate recrystallization of the SCL at some later time. This capability enables all-optical switching between the solid and the SCL phases. The physical origin of TEMPO's remarkable stability as an SCL remains an open question, but these results suggest that organic radicals comprise a new class of molecules that can form SCLs with potentially useful properties.

2.
Sens Actuators Rep ; 3: 100025, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35047829

RESUMO

As the COVID-19 pandemic has profoundly impacted human life, prompt diagnostic tests are becoming an essential part of the social activities. However, the expensive and time-consuming laboratory-based traditional methods do not suffice the enormous needs for massive number of tests, especially in resource-limited settings. Therefore, more affordable, rapid, sensitive and specific field-practical diagnostic devices play an important role in the fight against the disease. In this review, we present the current status and advances in the biosensing technologies for diagnosing COVID-19, ranging from commercial achievements to research developments. Starting from a brief introduction to the disease biomarkers, this review summarizes the working principles of the biosensing technologies, followed by a review of the commercial products and research advances in academia. We recapitulate the literatures with a wide scope of bio/marker detections, embracing nucleic acids, viral proteins, human immune responses, and other potential bio/markers. Further, the challenges and perspectives for their employment in future point-of-care applications are discussed, with an extended appraisal on the practical strategies to enlarge the testing capability without high cost. This critical review provides a comprehensive insight into the diagnostic tools for COVID-19 and will encourage the industry and academia in the field of diagnostic biosensing for future evolvement to large-scale point-of-care screening of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA