Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083784

RESUMO

Continuous monitoring of breathing activity is vital in detecting respiratory-based diseases such as obstructive sleep apnea (OSA) and hypopnea. Sleep apnea (SA) is a potentially dangerous sleep problem that occurs when a person's breathing stops and begins periodically while they sleep. In addition, SA interrupts sleep, causing significant daytime sleepiness, weirdness, and irritability. This study aims to design a single inertial measurement unit (IMU) sensor-based system to analyze the respiratory rate of humans. The results of the developed system is validated with the Equivital Wireless Physiological Systems for different activities. Further, the experiment has been designed to identify the optimal sensor placement location for efficient respiration rate estimation during different activities. The performance of the developed model has been quantified using breathing rate estimation accuracy (% BREA) and mean absolute error (MAE). Among all sensor placement locations and activities combinations, a window size of 30sec resulted in the worst performance, whereas a window size ≥ 60sec resulted in a better performance (p-value<0.05). In addition, the performance of the model has been found consistent for window size ≥ 60sec (p-value>0.05). For activity 3 (lying straight), comparably similar performance, 0.52±0.24 and 0.52±0.12 (p-value>0.05) have been depicted by the sensor placement position 3 (Abdomen) and position 1 (chest), respectively. Further, for the other two activities, activity 1 (sitting and working) and activity 2 (sitting straight), the best performance has been depicted as 0.32±0.18, 0.49±0.21 respectively (p-value<0.05), by the sensor placement position 2 (left ribs). This research presents a reliable, cost-effective, portable respiration monitoring system that could detect SA during sleep.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Taxa Respiratória , Síndromes da Apneia do Sono/diagnóstico , Apneia Obstrutiva do Sono/diagnóstico , Respiração , Sono
2.
IEEE/ACM Trans Comput Biol Bioinform ; 20(3): 1983-1994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37015582

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC (Single-Cell Information Maximized Noise-Invariant Deep Clustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Sequência de Bases , Análise de Célula Única/métodos , Análise por Conglomerados , Algoritmos
3.
Brain Inform ; 9(1): 16, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879626

RESUMO

Autism spectrum is a brain development condition that impairs an individual's capacity to communicate socially and manifests through strict routines and obsessive-compulsive behavior. Applied behavior analysis (ABA) is the gold-standard treatment for autism spectrum disorder (ASD). However, as the number of ASD cases increases, there is a substantial shortage of licensed ABA practitioners, limiting the timely formulation, revision, and implementation of treatment plans and goals. Additionally, the subjectivity of the clinician and a lack of data-driven decision-making affect treatment quality. We address these obstacles by applying two machine learning algorithms to recommend and personalize ABA treatment goals for 29 study participants with ASD. The patient similarity and collaborative filtering methods predicted ABA treatment with an average accuracy of 81-84%, with a normalized discounted cumulative gain of 79-81% (NDCG) compared to clinician-prepared ABA treatment recommendations. Additionally, we assess the two models' treatment efficacy (TE) by measuring the percentage of recommended treatment goals mastered by the study participants. The proposed treatment recommendation and personalization strategy are generalizable to other intervention methods in addition to ABA and for other brain disorders. This study was registered as a clinical trial on November 5, 2020 with trial registration number CTRI/2020/11/028933.

4.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2996-3007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34288873

RESUMO

Clustering single-cell RNA sequence (scRNA-seq) data poses statistical and computational challenges due to their high-dimensionality and data-sparsity, also known as 'dropout' events. Recently, Regularized Auto-Encoder (RAE) based deep neural network models have achieved remarkable success in learning robust low-dimensional representations. The basic idea in RAEs is to learn a non-linear mapping from the high-dimensional data space to a low-dimensional latent space and vice-versa, simultaneously imposing a distributional prior on the latent space, which brings in a regularization effect. This paper argues that RAEs suffer from the infamous problem of bias-variance trade-off in their naive formulation. While a simple AE wita latent regularization results in data over-fitting, a very strong prior leads to under-representation and thus bad clustering. To address the above issues, we propose a modified RAE framework (called the scRAE) for effective clustering of the single-cell RNA sequencing data. scRAE consists of deterministic AE with a flexibly learnable prior generator network, which is jointly trained with the AE. This facilitates scRAE to trade-off better between the bias and variance in the latent space. We demonstrate the efficacy of the proposed method through extensive experimentation on several real-world single-cell Gene expression datasets. The code for our work is available at https://github.com/arnabkmondal/scRAE.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Análise por Conglomerados , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3660-3663, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060692

RESUMO

Clinical time series, comprising of repeated clinical measurements provide valuable information of the trajectory of patients' condition. Linear dynamical systems (LDS) are used extensively in science and engineering for modeling time series data. The observation and state variables in LDS are assumed to be uniformly sampled in time with a fixed sampling rate. The observation sequence for clinical time series is often irregularly sampled and LDS do not model such data well. In this paper, we develop two LDS-based models for irregularly sampled data. The key idea is to incorporate a temporal difference variable within the state equations of LDS whose parameters are estimated using observed data. Our models are evaluated on prediction and imputation tasks using real irregularly sampled clinical time series data and are found to outperform state-of-the-art techniques.


Assuntos
Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA