Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 16(2): e0009848, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143495

RESUMO

Across the Pacific, and including in the Solomon Islands, outbreaks of arboviruses such as dengue, chikungunya, and Zika are increasing in frequency, scale and impact. Outbreaks of mosquito-borne disease have the potential to overwhelm the health systems of small island nations. This study mapped the seroprevalence of dengue, Zika, chikungunya and Ross River viruses in 5 study sites in the Solomon Islands. Serum samples from 1,021 participants were analysed by ELISA. Overall, 56% of participants were flavivirus-seropositive for dengue (28%), Zika (1%) or both flaviviruses (27%); and 53% of participants were alphavirus-seropositive for chikungunya (3%), Ross River virus (31%) or both alphaviruses (18%). Seroprevalence for both flaviviruses and alphaviruses varied by village and age of the participant. The most prevalent arboviruses in the Solomon Islands were dengue and Ross River virus. The high seroprevalence of dengue suggests that herd immunity may be a driver of dengue outbreak dynamics in the Solomon Islands. Despite being undetected prior to this survey, serology results suggest that Ross River virus transmission is endemic. There is a real need to increase the diagnostic capacities for each of the arboviruses to support effective case management and to provide timely information to inform vector control efforts and other outbreak mitigation interventions.


Assuntos
Infecções por Alphavirus/sangue , Febre de Chikungunya/sangue , Vírus Chikungunya/imunologia , Vírus da Dengue/imunologia , Dengue/sangue , Ross River virus/imunologia , Infecção por Zika virus/sangue , Zika virus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Anticorpos Antivirais/sangue , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Criança , Pré-Escolar , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Masculino , Melanesia/epidemiologia , Pessoa de Meia-Idade , Ross River virus/genética , Ross River virus/isolamento & purificação , Estudos Soroepidemiológicos , Adulto Jovem , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
2.
Parasit Vectors ; 12(1): 558, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771626

RESUMO

BACKGROUND: The ecology of many mosquitoes, including Anopheles farauti, the dominant malaria vector in the southwest Pacific including the Solomon Islands, remains inadequately understood. Studies to map fine scale vector distributions are biased when trapping techniques use lures that will influence the natural movements of mosquitoes by attracting them to traps. However, passive collection methods allow the detailed natural distributions of vector populations by sex and physiological states to be revealed. METHODS: The barrier screen, a passive mosquito collection method along with human landing catches were used to record An. farauti distributions over time and space in two Solomon Island villages from May 2016 to July 2017. RESULTS: Temporal and spatial distributions of over 15,000 mosquitoes, including males as well as unfed, host seeking, blood-fed, non-blood fed and gravid females were mapped. These spatial and temporal patterns varied by species, sex and physiological state. Sugar-fed An. farauti were mostly collected between 10-20 m away from houses with peak activity from 18:00 to 19:00 h. Male An. farauti were mostly collected greater than 20 m from houses with peak activity from 19:00 to 20:00 h. CONCLUSIONS: Anopheles farauti subpopulations, as defined by physiological state and sex, are heterogeneously distributed in Solomon Island villages. Understanding the basis for these observed heterogeneities will lead to more accurate surveillance of mosquitoes and will enable spatial targeting of interventions for greater efficiency and effectiveness of vector control.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Mosquitos Vetores/fisiologia , Animais , Comportamento Alimentar , Feminino , Habitação , Masculino , Melanesia , Fatores Sexuais , Análise Espaço-Temporal
3.
Malar J ; 18(1): 208, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234876

RESUMO

BACKGROUND: Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship. METHODS: Adult anophelines were sampled from six villages in Western and Central Provinces, Solomon Islands between March 2014 and February 2017. The size of females was estimated by measuring wing lengths, and then analysed for associations with biting densities and rainfall. RESULTS: In the Solomon Islands, three anopheline species, An. farauti, Anopheles hinesorum and Anopheles lungae, differed in size. The primary malaria vector, An. farauti, varied significantly in size among villages. Greater rainfall was directly associated with higher densities of An. farauti biting rates, but inversely associated with body size with the smallest mean sized mosquitoes present during the peak transmission period. A measurable association between body size and survivorship was not found. CONCLUSIONS: Density dependent effects are likely impacting the size of adult An. farauti emerging from a range of larval habitats. The data suggest that rainfall increases An. farauti numbers and that these more abundant mosquitoes are significantly smaller in size, but without any reduced survivorship being associated with smaller size. The higher malaria transmission rate in a high malaria focus village appears to be determined more by vector numbers than size or survivorship of the vectors.


Assuntos
Anopheles/anatomia & histologia , Anopheles/fisiologia , Tamanho Corporal , Malária/transmissão , Mosquitos Vetores/anatomia & histologia , Mosquitos Vetores/fisiologia , Estações do Ano , Animais , Mordeduras e Picadas , Feminino , Humanos , Melanesia , Chuva
4.
Parasit Vectors ; 11(1): 606, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482239

RESUMO

BACKGROUND: Decisions on when vector control can be withdrawn after malaria is eliminated depend on the receptivity or potential of an area to support vector populations. To guide malaria control and elimination programmes, the potential of biting rates, sporozoite rates, entomological inoculation rates and parity rates to estimate malaria receptivity and transmission were compared within and among geographically localised villages of active transmission in the Western Province of the Solomon Islands. RESULTS: Malaria transmission and transmission potential was heterogeneous in both time and space both among and within villages as defined by anopheline species composition and biting densities. Biting rates during the peak biting period (from 18:00 to 00:00 h) of the primary vector, Anopheles farauti, ranged from less than 0.3 bites per person per half night in low receptivity villages to 26 bites per person in highly receptive villages. Within villages, sites with high anopheline biting rates were significantly clustered. Sporozoite rates provided evidence for continued transmission of Plasmodium falciparum, P. vivax and P. ovale by An. farauti and for incriminating An. hinesorum, as a minor vector, but were unreliable as indicators of transmission intensity. CONCLUSIONS: In the low transmission area studied, sporozoite, entomological inoculation and parity rates could not be measured with the precision required to provide guidance to malaria programmes. Receptivity and potential transmission risk may be most reliably estimated by the vector biting rate. These results support the meaningful design of operational research programmes to ensure that resources are focused on providing information that can be utilised by malaria control programmes to best understand both transmission, transmission risk and receptivity across different areas.


Assuntos
Anopheles/fisiologia , Erradicação de Doenças/métodos , Mordeduras e Picadas de Insetos , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Animais , Anopheles/parasitologia , Feminino , Humanos , Estudos Longitudinais , Malária/epidemiologia , Malária/prevenção & controle , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Melanesia/epidemiologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/fisiologia , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/fisiologia , Estações do Ano , Esporozoítos/isolamento & purificação
5.
Malar J ; 15: 151, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26960327

RESUMO

BACKGROUND: In the 1970s, Anopheles farauti in the Solomon Island responded to indoor residual spraying with DDT by increasingly feeding more outdoors and earlier in the evening. Although long-lasting insecticidal nets (LLINs) are now the primary malaria vector control intervention in the Solomon Islands, only a small proportion of An. farauti still seek blood meals indoors and late at night where they are vulnerable to being killed by contract with the insecticides in LLINs. The effectiveness of LLINs and indoor residual spraying (IRS) in controlling malaria transmission where the vectors are exophagic and early biting will depend on whether the predominant outdoor or early biting phenotypes are associated with a subpopulation of the vectors present. METHODS: Mark-release-recapture experiments were conducted in the Solomon Islands to determine if individual An. farauti repeat the same behaviours over successive feeding cycles. The two behavioural phenotypes examined were those on which the WHO recommended malaria vector control strategies, LLINs and IRS, depend: indoor and late night biting. RESULTS: Evidence was found for An. farauti being a single population regarding time (early evening or late night) and location (indoor or outdoor) of blood feeding. Individual An. farauti did not consistently repeat behavioural phenotypes expressed for blood feeding (e.g., while most mosquitoes that fed early and outdoors, and would repeat those behaviours, some fed late at night or indoors in the next feeding cycle). CONCLUSIONS: The finding that An. farauti is a homogeneous population is significant, because during the multiple feeding cycles required to complete the extrinsic incubation period, many individual female anophelines will enter houses late at night and be exposed to the insecticides used in LLINs or IRS. This explains, in part, the control that LLINs and IRS have exerted against a predominantly outdoor feeding vector, such as An. farauti. These findings may be relevant to many of the outdoor feeding vectors that dominate transmission in much of the malaria endemic world and justifies continued use of LLINs. However, the population-level tendency of mosquitoes to feed outdoors and early in the evening does require complementary interventions to accelerate malaria control towards elimination.


Assuntos
Anopheles/fisiologia , Animais , Anopheles/crescimento & desenvolvimento , Bioensaio , Comportamento Alimentar , Feminino , Humanos , Melanesia
6.
Malar J ; 15: 152, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964528

RESUMO

BACKGROUND: The proportion of blood meals that mosquitoes take from a host species is a function of the interplay of extrinsic (abundance and location of potential hosts) and intrinsic (innate preference) factors. A mark-release-recapture experiment addressed whether host preference in a population of Anopheles farauti was uniform or if there were anthropophilic and zoophilic subpopulations. The corresponding fitness associated with selecting different hosts for blood meals was compared by measuring fecundity. METHODS: The attractiveness of humans for blood meals by An. farauti in the Solomon Islands was compared to pigs using tent traps. Host fidelity was assessed by mark-release-recapture experiments in which different colour dusts were linked to the host to which the mosquito was first attracted. Outdoor resting An. farauti were captured on barrier screens and the human blood index (HBI) as well as the feeding index were calculated. The fecundity of individual An. farauti after feeding on either humans or pigs was assessed from blood-fed mosquitoes held in individual oviposition chambers. RESULTS: Anopheles farauti were more attracted to humans than pigs at a ratio of 1.31:1.00. The mark-release-recapture experiment found evidence for An. farauti being a single population regarding host preference. The HBI of outdoor resting An. farauti was 0.93 and the feeding index was 1.29. Anopheles farauti that fed on a human host laid more eggs but had a longer oviposition time compared to An. farauti that had blood fed on a pig. CONCLUSIONS: One of the strongest drivers for host species preference was the relative abundance of the different host species. Here, An. farauti have a slight preference for humans over pigs as blood meal sources. However, the limited availability of alternative hosts relative to humans in the Solomon Islands ensures a very high proportion of blood meals are obtained from humans, and thus, the transmission potential of malaria by An. farauti is high.


Assuntos
Anopheles/fisiologia , Especificidade de Hospedeiro , Animais , Anopheles/crescimento & desenvolvimento , Bioensaio , Comportamento Alimentar , Feminino , Fertilidade , Humanos , Melanesia , Suínos
7.
Malar J ; 15: 156, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26969430

RESUMO

BACKGROUND: The effectiveness of vector control on malaria transmission by long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) depends on the vectors entering houses to blood feed and rest when people are inside houses. In the Solomon Islands, significant reductions in malaria have been achieved in the past 20 years with insecticide-treated bed nets, IRS, improved diagnosis and treatment with artemisinin combination therapies; despite the preference of the primary vector, Anopheles farauti, to feed outdoors and early in the evening and thereby avoid potential exposure to insecticides. Rational development of tools to complement LLINs and IRS by attacking vectors outdoor requires detailed knowledge of the biology and behaviours of the target species. METHODS: Malaria transmission in Central Province, Solomon Islands was estimated by measuring the components comprising the entomological inoculation rate (EIR) as well as the vectorial capacity of An. farauti. In addition, the daily and seasonal biting behaviour of An. farauti, was examined and the duration of the feeding cycle was estimated with a mark-release-recapture experiment. RESULTS: Anopheles farauti was highly exophagic with 72% captured by human landing catches (HLC) outside of houses. Three-quarters (76%) of blood feeding on humans was estimated to occur before 21.00 h. When the hourly location of humans was considered, the proportion of exposure to mosquito bites on humans occurring indoors (πi) was only 0.130 ± 0.129. Peak densities of host seeking An. farauti occurred between October and January. The annual EIR was estimated to be 2.5 for 2012 and 33.2 for 2013. The length of the feeding cycle was 2.1 days. CONCLUSIONS: The short duration of the feeding cycle by this species offers an explanation for the substantial control of malaria that has been achieved in the Solomon Islands by LLINs and IRS. Anopheles farauti is primarily exophagic and early biting, with 13% of mosquitoes entering houses to feed late at night during each feeding cycle. The two-day feeding cycle of An. farauti requires females to take 5-6 blood meals before the extrinsic incubation period (EIP) is completed; and this could translate into substantial population-level mortality by LLINs or IRS before females would be infectious to humans with Plasmodium falciparum and Plasmodium vivax. Although An. farauti is primarily exophagic, the indoor vector control tools recommended by the World Health Organization (LLINs and IRS) can still provide an important level of control. Nonetheless, elimination will likely require vector control tools that target other bionomic vulnerabilities to suppress transmission outdoors and that complement the control provided by LLINs and IRS.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Transmissão de Doença Infecciosa/prevenção & controle , Comportamento Alimentar , Mosquiteiros Tratados com Inseticida , Malária/prevenção & controle , Malária/transmissão , Adulto , Animais , Feminino , Humanos , Melanesia , Controle de Mosquitos/métodos , Plasmodium falciparum , Plasmodium vivax
8.
Malar J ; 15: 164, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980326

RESUMO

BACKGROUND: There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. METHODS: The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. RESULTS: Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). CONCLUSIONS: The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most productive larval sites of this malaria vector, were "few, fixed and findable" and theoretically, therefore, amenable to successful LSM. However, the immense scale and complexity of these ecosystems in which An. farauti larvae are found raises questions regarding the ability to effectively control the larvae, as incomplete larviciding could trigger density dependent effects resulting in increased larval survivorship. While LSM has the potential to significantly contribute to malaria control of this early and outdoor biting vector, more information on the distribution of larvae within these extensive habitats is required to maximize the effectiveness of LSM.


Assuntos
Anopheles/crescimento & desenvolvimento , Ecossistema , Animais , Estudos Transversais , Feminino , Larva/crescimento & desenvolvimento , Estudos Longitudinais , Melanesia , Filogeografia , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA