Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731442

RESUMO

Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.


Assuntos
Anticonvulsivantes , Pentilenotetrazol , Receptores de GABA-A , Convulsões , Anticonvulsivantes/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Animais , Camundongos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Receptores de GABA-A/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/química , Quinazolinonas/síntese química , Simulação de Acoplamento Molecular , Masculino , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Estrutura Molecular , Sítio Alostérico
2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38543081

RESUMO

Lipophilicity, a significant physicochemical parameter of bioactive molecules, along with absorption, distribution, metabolism, excretion parameters and toxicity risk, was investigated for 32 thiazolo[3,2-b][1,2,4]triazole and imidazo[2,1-b][1,3,4]thiadiazole derivatives with anti-inflammatory potential. The experimental lipophilicity study was carried out by reversed-phase thin-layer chromatography in a binary isopropanol-water mobile phase, and the obtained results were compared with the theoretical lipophilicity parameters estimated by various computational methods. Strong correlations were found between the experimental retention factors and calculated partition coefficients. A modified Petra/Osiris/Molinspiration analysis was performed on the previously synthesized compounds, using SwissADME, Osiris and Molinspiration web tools. The predicted in silico parameters highlighted the most promising compounds as potential drug candidates. The compounds showed good gastrointestinal absorption, moderate activity according to the bioactivity score (values situated between -1.25 and -0.06), and a safe toxicity profile. The results obtained in this study will contribute to lipophilicity studies and other future studies focused on modulating new drug candidates starting from thiazolo[3,2-b][1,2,4]triazole and imidazo[2,1-b][1,3,4]thiadiazole derivatives, which are important heterocycles in medicinal chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA