Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959949

RESUMO

Acute respiratory infections are an important health concern. Traditionally, polysaccharide-enriched extracts from plants, containing immunomodulatory rhamnogalacturonan-I (RG-1), were used prophylactically. We established the effects of dietary supplementation with carrot-derived RG-I (cRG-I, 0-0.3-1.5 g/day) in 177 healthy individuals (18-65 years) on symptoms following infection with rhinovirus strain 16 (RV16). Primary outcomes were changes in severity and duration of symptoms, and viral load in nasal lavage. Secondary outcomes were changes in innate immune and anti-viral responses, reflected by CXCL10 and CXCL8 levels and cell differentials in nasal lavage. In a nested cohort, exploratory transcriptome analysis was conducted on nasal epithelium. Intake of cRG-I was safe, well-tolerated and accelerated local cellular and humoral innate immune responses induced by RV16 infection, with the strongest effects at 1.5 g/d. At 0.3 g/d, a faster interferon-induced response, induction of the key anti-viral gene EIF2AK2, faster viral clearance, and reduced symptom severity (-20%) and duration (-25%) were observed. Anti-viral responses, viral clearance and symptom scores at 1.5 g/d were in between those of 0 and 0.3 g/d, suggesting a negative feedback loop preventing excessive interferon responses. Dietary intake of cRG-I accelerated innate immune and antiviral responses, and reduced symptoms of an acute respiratory viral infection.


Assuntos
Antivirais , Quimiocina CXCL10/metabolismo , Daucus carota/química , Suplementos Nutricionais , Imunidade Inata/efeitos dos fármacos , Interleucina-8/metabolismo , Pectinas/farmacologia , Pectinas/uso terapêutico , Fitoterapia , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Rhinovirus , Adolescente , Adulto , Idoso , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lavagem Nasal , Gravidade do Paciente , Pectinas/isolamento & purificação , Infecções por Picornaviridae/prevenção & controle , Resultado do Tratamento , Adulto Jovem
2.
Nutrients ; 13(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809720

RESUMO

The prevalence of acute respiratory infections and their impact on quality of life underlies the need for efficacious solutions that are safe, sustainable and economically viable. Polysaccharides in several (traditional) plant extracts have been shown to be immunostimulatory, and some studies suggest beneficial effects against respiratory infections. The aim of this study was to (i) identify the active polysaccharide constituents from affordable and renewable crops (bell pepper and carrot) using activity-guided fractionation, (ii) evaluate in vitro effects on innate immune responses (phagocytosis and cytokine secretion), microbiota modulation and production of short chain fatty acids, followed by (iii) the evaluation of effects of a bell pepper extract enriched for the active component in a human proof of concept study. We identified rhamnogalacturonan-I (RG-I) as the nutricophore responsible for the immunostimulatory activity with substantial structural and functional equivalence between bell pepper (bp) and carrot (c). The in vitro studies showed that bpRG-I and cRG-I comprise similar immune- and microbiota modulatory potential and the human study demonstrated that bpRG-I was well tolerated and enhanced innate immune responsiveness in vivo. This is an important step towards testing the efficacy of RG-I from bpRG-I or cRG-I in an infection trial in humans.


Assuntos
Capsicum/química , Daucus carota/química , Fatores Imunológicos/farmacologia , Pectinas/farmacologia , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Adulto , Idoso , Citocinas/metabolismo , Método Duplo-Cego , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fatores Imunológicos/isolamento & purificação , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/fisiologia , Masculino , Pessoa de Meia-Idade , Pectinas/isolamento & purificação , Fagocitose/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Estudo de Prova de Conceito , Adulto Jovem
3.
Food Chem Toxicol ; 139: 111243, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151604

RESUMO

The dietary fibre product examined is a pectic polysaccharide extract from carrot (Daucus carota), enriched for pectin fragments comprising mainly rhamnogalacturonan-I (RG-I) (abbreviated product name cRG-I). To assess the safety of cRG-I for use as food ingredient, repeated-dose oral toxicity and in vitro genotoxicity studies were conducted. In the subchronic toxicity study (OECD test guideline 408), Wistar Hannover rats received cRG-I at dietary levels (w/w) of 0%, 2.5%, 5% and 10% for 13 weeks. cRG-I induced no adverse effects in this study. The NOAEL was 10% in the diet (equivalent to 6.9 and 7.8 g cRG-I/kg body weight/day in male and female rats, respectively). A package of three in vitro genotoxicity tests (Ames, mouse lymphoma and micronucleus assay in human peripheral blood lymphocytes) was negative for induction of point mutation and chromosome damage. An initial Ames test showed a weak positive response in Salmonella typhimurium strain (TA1537). This response was non-reproducible and attributed to microbial contamination as subsequent tests with an irradiated batch of cRG-I including a repeat Ames test were negative. cRG-I was therefore considered to be non-mutagenic.


Assuntos
Dano ao DNA/efeitos dos fármacos , Daucus carota/química , Exposição Dietética/efeitos adversos , Pectinas/toxicidade , Ramnogalacturonanos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Feminino , Masculino , Testes para Micronúcleos , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Pectinas/análise , Ratos , Ratos Wistar , Ramnogalacturonanos/análise , Medição de Risco , Testes de Toxicidade Subcrônica
4.
Methods Mol Biol ; 1639: 161-171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28752456

RESUMO

Liver perfusion is a common technique used to isolate parenchymal and non-parenchymal liver cells for in vitro experiments. This method allows hepatic cells to be separated based on their size and weight, by centrifugation using a density gradient. To date, other methods allow the isolation of only one viable hepatic cellular fraction from a single mouse; either parenchymal (hepatocytes) or non-parenchymal cells (i.e., Kupffer cells or hepatic stellate cells). Here, we describe a method to isolate both hepatocytes and Kupffer cells from a single mouse liver, thereby providing the unique advantage of studying different liver cell types that have been isolated from the same organism.


Assuntos
Separação Celular/métodos , Hepatócitos/citologia , Células de Kupffer/citologia , Fígado/citologia , Animais , Imunofluorescência , Indicadores e Reagentes , Camundongos , Camundongos Endogâmicos C57BL , Perfusão , Soluções
5.
PLoS One ; 9(4): e96345, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24781986

RESUMO

The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.


Assuntos
Fígado Gorduroso/genética , Resistência à Insulina/genética , Fígado/patologia , Receptores Acoplados a Proteínas G/genética , Animais , Peso Corporal , Fígado Gorduroso/patologia , Deleção de Genes , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Receptores de Quimiocinas
6.
Aging (Albany NY) ; 6(4): 281-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24751397

RESUMO

CD36 has been associated with obesity and diabetes in human liver diseases, however, its role in age-associated nonalcoholic fatty liver disease (NAFLD) is unknown. Therefore, liver biopsies were collected from individuals with histologically normal livers (n=30), and from patients diagnosed with simple steatosis (NAS; n=26). Patients were divided into two groups according to age and liver biopsy samples were immunostained for CD36. NAFLD parameters were examined in young (12-week) and middle-aged (52-week) C57BL/6J mice, some fed with chow-diet and some fed with low-fat (LFD; 10% kcal fat) or high-fat diet (HFD; 60% kcal fat) for 12-weeks. CD36 expression was positively associated with age in individuals with normal livers but not in NAS patients. However, CD36 was predominantly located at the plasma membrane of hepatocytes in aged NAS patients as compared to young. In chow-fed mice, aging, despite an increase in hepatic CD36 expression, was not associated with the development of NAFLD. However, middle-aged mice did exhibit the development of HFD-induced NAFLD, mediated by an increase of CD36 on the membrane. Enhanced CD36-mediated hepatic fat uptake may contribute to an accelerated progression of NAFLD in mice and humans. Therapies to prevent the increase in CD36 expression and/or CD36 from anchoring at the membrane may prevent the development of NAFLD.


Assuntos
Antígenos CD36/biossíntese , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Envelhecimento , Animais , Membrana Celular/metabolismo , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
7.
Atherosclerosis ; 232(2): 390-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24468153

RESUMO

OBJECTIVE: It is generally assumed that hepatic inflammation in obesity is linked to the pathogenesis of insulin resistance. Several recent studies have shed doubt on this view, which questions the causality of this association. This study focuses on Kupffer cell-mediated hepatic inflammation as a possible driver of insulin resistance in the absence and presence of obesity. METHODS: We used male mice deficient for the low-density lipoprotein receptor (Ldlr(-/-)) and susceptible to cholesterol-induced hepatic inflammation. Whole body and hepatic insulin resistance was measured in mice fed 4 diets for 2 and 15 weeks, i.e., chow, high-fat (HF), HF-cholesterol (HFC; 0.2% cholesterol) and HF without cholesterol (HFnC). Biochemical parameters in plasma and liver were measured and inflammation was determined using immunohistochemistry and RT-PCR. RESULTS: At 2 weeks, we did not find significant metabolic effects in either diet group, except for the mice fed a HFC diet which showed pronounced hepatic inflammation (p < 0.05) but normal insulin sensitivity. At 15 weeks, a significant increase in insulin levels, HOMA-IR, and hepatic insulin resistance was observed in mice fed a HFC, HFnC, and HF diet compared to chow-fed mice (p < 0.05). Regardless of the level of hepatic inflammation (HFC > HF, HFnC; p < 0.05) insulin resistance in mice fed HFC was no worse compared to mice on a HFnC and HF diet. CONCLUSION: These data show that cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male Ldlr(-/-) mice. This study suggests that Kupffer cell-driven hepatic inflammation is a consequence, not a cause, of metabolic dysfunction in obesity.


Assuntos
Colesterol/sangue , Resistência à Insulina , Fígado/patologia , Receptores de LDL/genética , Ração Animal , Animais , Dieta , Gorduras na Dieta , Teste de Tolerância a Glucose , Hepatócitos/citologia , Inflamação , Insulina/metabolismo , Células de Kupffer/citologia , Masculino , Camundongos , Camundongos Knockout
8.
Hepatology ; 57(2): 566-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22941955

RESUMO

UNLABELLED: Ectodomain shedding of tumor necrosis factor receptor 1 (TNFR1) provides negative feedback to the inflammatory loop induced by TNFα. As the significance of this mechanism in obesity-associated pathologies is unclear, we aimed to unravel how much TNFR1 ectodomain shedding controls the development of nonalcoholic fatty liver disease (NAFLD), as well as its role in the development of insulin resistance. We used knockin mice expressing a mutated TNFR1 ectodomain (p55(Δns)), incapable of shedding and dampen the inflammatory response. Our data show that persistent TNFα signaling through this inability of TNFR1 ectodomain shedding contributes to chronic low-grade inflammation, which is confined to the liver. In spite of this, hepatic lipid levels were not affected by the nonshedding mutation in mice fed a chow diet, nor were they worse off following 12 weeks of high-fat diet (HFD) than controls (p55(+/+)) fed an HFD. We detected inflammatory infiltrates, hepatocellular necrosis, and apoptosis in livers of p55(Δns/Δns) mice fed an HFD, suggesting advanced progression of NAFLD toward nonalcoholic steatohepatitis (NASH). Indeed, fibrosis was present in p55(Δns/Δns) mice, but absent in wildtype mice, confirming that the p55(Δns/Δns) mice had a more severe NASH phenotype. Despite low-grade hepatic inflammation, insulin resistance was not observed in p55(Δns/Δns) mice fed a chow diet, and HFD-induced insulin resistance was no worse in p55(Δns/Δns) mice than p55(+/+) mice. CONCLUSION: TNFR1 ectodomain shedding is not an essential feedback mechanism in preventing the development of hepatic steatosis or insulin resistance. It is, however, pivotal in attenuating the progression from "simple steatosis" towards a more serious phenotype with many NASH features. Targeting TNFR1 could therefore be beneficial in attenuating NASH.


Assuntos
Fígado Gorduroso/etiologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Animais , Dieta Hiperlipídica , Feminino , Inflamação/etiologia , Resistência à Insulina/genética , Fígado/patologia , Masculino , Camundongos , Mutação , Hepatopatia Gordurosa não Alcoólica
9.
Curr Opin Lipidol ; 23(2): 111-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22274753

RESUMO

PURPOSE OF REVIEW: Bone marrow transplantation (BMT) technology is a firmly established tool for studying atherosclerosis. Only recently it is helping us to understand the inflammatory mechanisms leading to the development of obesity, insulin resistance and type 2 diabetes. Here we review the use of BMT as a tool for studying the metabolic syndrome. RECENT FINDINGS: Bone marrow-derived cells, and particularly monocytes and macrophages, have been a major subject in the study of atherogenesis, and they are highly amenable for research purposes because of their application in bone marrow transplantations. For example, the many pathways studied using BMT have helped unmask ABC transporters as the genes controlling reverse cholesterol transport and foam cell formation, as well as other genes like CCR2 and IκBα controlling leukocyte development, migration and activation. The invasion of leukocytes, not only in the vessel wall, but also in adipose tissue and liver, shares many common mechanisms relevant to atherosclerosis and metabolic diseases. SUMMARY: BMT is an efficient and versatile tool for assessing the roles of specific genes that are restricted to hematopoietic cells, and especially the monocytes and macrophages in metabolic syndrome and its related pathologies.


Assuntos
Aterosclerose/metabolismo , Transplante de Medula Óssea/métodos , Macrófagos/metabolismo , Síndrome Metabólica/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Predisposição Genética para Doença/genética , Humanos , Metabolismo dos Lipídeos/genética , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Monócitos/metabolismo
10.
Atherosclerosis ; 213(2): 335-44, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20576267

RESUMO

Hematopoietic cells have been established as major players in cardiovascular disease, with an important role in the etiology of atherosclerotic plaque. In addition, hematopoietic cells, and in particular the cells of monocyte and macrophage lineages, have recently been unmasked as one of the main causes of metabolic abnormalities leading to insulin resistance and type 2 diabetes. With the availability of transgenic mouse models that reproduce many aspects of these diseases, research in these areas has been able to make exceptional progress. Much of the work exploring the role of hematopoietic cells has been carried out on chimeric mice made by the recipient disease model mice being given donor bone marrow cells from transgenic mice harboring a genetic alteration in a relevant pathway. Here, we will describe the potential of the bone marrow transplantation approach and discuss recent developments, including the use of virally transduced cells. We will explain some of the caveats, their effect on the experimental outcomes, and some possible solutions. Taken as a whole, this technology offers great advantages in efficiency and cost-effectiveness, and it is expected to continue to be a crucial technique in cardiovascular research work.


Assuntos
Transplante de Medula Óssea , Doenças Cardiovasculares/etiologia , Transplante de Células-Tronco Hematopoéticas , Animais , Aterosclerose/etiologia , Feminino , Trato Gastrointestinal/efeitos da radiação , Resistência à Insulina , Masculino , Camundongos , Camundongos Transgênicos , Placa Aterosclerótica/etiologia , Quimeras de Transplante , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA