Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biomacromolecules ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815979

RESUMO

Lubricin, an intrinsically disordered glycoprotein, plays a pivotal role in facilitating smooth movement and ensuring the enduring functionality of synovial joints. The central domain of this protein serves as a source of this excellent lubrication and is characterized by its highly glycosylated, negatively charged, and disordered structure. However, the influence of O-glycans on the viscosity of lubricin remains unclear. In this study, we employ molecular dynamics simulations in the absence and presence of shear, along with continuum simulations, to elucidate the intricate interplay between O-glycans and lubricin and the impact of O-glycans on lubricin's conformational properties and viscosity. We found the presence of O-glycans to induce a more extended conformation in fragments of the disordered region of lubricin. These O-glycans contribute to a reduction in solution viscosity but at the same time weaken shear thinning at high shear rates, compared to nonglycosylated systems with the same density. This effect is attributed to the steric and electrostatic repulsion between the fragments, which prevents their conglomeration and structuring. Our computational study yields a mechanistic mechanism underlying previous experimental observations of lubricin and paves the way to a more rational understanding of its function in the synovial fluid.

2.
Nat Struct Mol Biol ; 31(6): 861-873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459128

RESUMO

Biorientation of chromosomes during cell division is necessary for precise dispatching of a mother cell's chromosomes into its two daughters. Kinetochores, large layered structures built on specialized chromosome loci named centromeres, promote biorientation by binding and sensing spindle microtubules. One of the outer layer main components is a ten-subunit assembly comprising Knl1C, Mis12C and Ndc80C (KMN) subcomplexes. The KMN is highly elongated and docks on kinetochores and microtubules through interfaces at its opposite extremes. Here, we combine cryogenic electron microscopy reconstructions and AlphaFold2 predictions to generate a model of the human KMN that reveals all intra-KMN interfaces. We identify and functionally validate two interaction interfaces that link Mis12C to Ndc80C and Knl1C. Through targeted interference experiments, we demonstrate that this mutual organization strongly stabilizes the KMN assembly. Our work thus reports a comprehensive structural and functional analysis of this part of the kinetochore microtubule-binding machinery and elucidates the path of connections from the chromatin-bound components to the force-generating components.


Assuntos
Microscopia Crioeletrônica , Cinetocoros , Proteínas Associadas aos Microtúbulos , Modelos Moleculares , Proteínas Nucleares , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Células HeLa
3.
PLoS Comput Biol ; 19(12): e1011726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117828

RESUMO

Plasmodium falciparum (Pf) is responsible for the most lethal form of malaria. VAR2CSA is an adhesin protein expressed by this parasite at the membrane of infected erythrocytes for attachment to the placenta, leading to pregnancy-associated malaria. VAR2CSA is a large 355 kDa multidomain protein composed of nine extracellular domains, a transmembrane helix, and an intracellular domain. VAR2CSA binds to Chondroitin Sulphate A (CSA) of the proteoglycan matrix of the placenta. Shear flow, as the one occurring in blood, has been shown to enhance the (VAR2CSA-mediated) adhesion of Pf-infected erythrocytes on the CSA-matrix. However, the underlying molecular mechanism governing this enhancement has remained elusive. Here, we address this question by using equilibrium, force-probe, and docking-based molecular dynamics simulations. We subjected the VAR2CSA protein-CSA sugar complex to a force mimicking the tensile force exerted on this system due to the shear of the flowing blood. We show that upon this force exertion, VAR2CSA undergoes a large opening conformational transition before the CSA sugar chain dissociates from its main binding site. This preferential order of events is caused by the orientation of the molecule during elongation, as well as the strong electrostatic attraction of the sugar to the main protein binding site. Upon opening, two additional cryptic CSA binding sites get exposed and a functional dodecameric CSA molecule can be stably accommodated at these force-exposed positions. Thus, our results suggest that mechanical forces increase the avidity of VAR2CSA by turning it from a monovalent to a multivalent state. We propose this to be the molecular cause of the observed shear-enhanced adherence. Mechanical control of the valency of VAR2CSA is an intriguing hypothesis that can be tested experimentally and which is of relevance for the understanding of the malaria infection and for the development of anti placental-malaria vaccines targeting VAR2CSA.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Feminino , Gravidez , Malária Falciparum/parasitologia , Antígenos de Protozoários , Sítios de Ligação , Plasmodium falciparum , Placenta/metabolismo , Placenta/parasitologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Açúcares
4.
Biophys J ; 122(21): 4241-4253, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803828

RESUMO

Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into ß sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%-80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.


Assuntos
Fibroínas , Seda , Seda/química , Seda/metabolismo , Proteínas de Artrópodes/química , Fibroínas/química , Peptídeos , Alanina
5.
Biophys J ; 122(19): 3831-3842, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537863

RESUMO

Von Willebrand factor (VWF) is a giant extracellular glycoprotein that carries out a key adhesive function during primary hemostasis. Upon vascular injury and triggered by the shear of flowing blood, VWF establishes specific interactions with several molecular partners in order to anchor platelets to collagen on the exposed subendothelial surface. VWF also interacts with itself to form aggregates that, adsorbed on the surface, provide more anchor sites for the platelets. However, the interplay between elongation and subsequent exposure of cryptic binding sites, self-association, and adsorption on the surface remained unclear for VWF. In particular, the role of shear flow in these three processes is not well understood. In this study, we address these questions by using Brownian dynamics simulations at a coarse-grained level of resolution. We considered a system consisting of multiple VWF-like self-interacting chains that also interact with a surface under a shear flow. By a systematic analysis, we reveal that chain-chain and chain-surface interactions coexist nontrivially to modulate the spontaneous adsorption of VWF and the posterior immobilization of secondary tethered chains. Accordingly, these interactions tune VWF's extension and its propensity to form shear-assisted functional adsorbed aggregates. Our data highlight the collective behavior VWF self-interacting chains have when bound to the surface, distinct from that of isolated or flowing chains. Furthermore, we show that the extension and the exposure to solvent have a similar dependence on shear flow, at a VWF-monomer level of resolution. Overall, our results highlight the complex interplay that exists between adsorption, cohesion, and shear forces and their relevance for the adhesive hemostatic function of VWF.

6.
Nat Commun ; 14(1): 4311, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463895

RESUMO

The talin-vinculin axis is a key mechanosensing component of cellular focal adhesions. How talin and vinculin respond to forces and regulate one another remains unclear. By combining single-molecule magnetic tweezers experiments, Molecular Dynamics simulations, actin-bundling assays, and adhesion assembly experiments in live cells, we here describe a two-ways allosteric network within vinculin as a regulator of the talin-vinculin interaction. We directly observe a maturation process of vinculin upon talin binding, which reinforces the binding to talin at a rate of 0.03 s-1. This allosteric transition can compete with force-induced dissociation of vinculin from talin only at forces up to 10 pN. Mimicking the allosteric activation by mutation yields a vinculin molecule that bundles actin and localizes to focal adhesions in a force-independent manner. Hence, the allosteric switch confines talin-vinculin interactions and focal adhesion build-up to intermediate force levels. The 'allosteric vinculin mutant' is a valuable molecular tool to further dissect the mechanical and biochemical signalling circuits at focal adhesions and elsewhere.


Assuntos
Actinas , Talina , Actinas/metabolismo , Talina/metabolismo , Vinculina/genética , Vinculina/metabolismo , Regulação Alostérica , Adesões Focais/metabolismo , Ligação Proteica
7.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37292626

RESUMO

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/ cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein-protein contacts but also due to increased lipid-protein complementarity. Since each tetramer interacts with four such 'glue' cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.

8.
Circ Res ; 132(9): e151-e168, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37021588

RESUMO

BACKGROUND: Neutrophil migration is critical to the initiation and resolution of inflammation. Macrophage-1 antigen (Mac-1; CD11b/CD18, αMß2) is a leukocyte integrin essential for firm adhesion to endothelial ICAM-1 (intercellular adhesion molecule 1) and migration of neutrophils in the shear forces of the circulation. PDI (protein disulfide isomerase) has been reported to influence neutrophil adhesion and migration. We aimed to elucidate the molecular mechanism of PDI control of Mac-1 affinity for ICAM-1 during neutrophil migration under fluid shear. METHODS: Neutrophils isolated from whole blood were perfused over microfluidic chips coated with ICAM-1. Colocalization of Mac-1 and PDI on neutrophils was visualized by fluorescently labeled antibodies and confocal microscopy. The redox state of Mac-1 disulfide bonds was mapped by differential cysteine alkylation and mass spectrometry. Wild-type or disulfide mutant Mac-1 was expressed recombinantly in Baby Hamster Kidney cells to measure ligand affinity. Mac-1 conformations were measured by conformation-specific antibodies and molecular dynamics simulations. Neutrophils crawling on immobilized ICAM-1 were measured in presence of oxidized or reduced PDI, and the effect of PDI inhibition using isoquercetin on neutrophil crawling on inflamed endothelial cells was examined. Migration indices in the X- and Y-direction were determined and the crawling speed was calculated. RESULTS: PDI colocalized with high-affinity Mac-1 at the trailing edge of stimulated neutrophils when crawling on ICAM-1 under fluid shear. PDI cleaved 2 allosteric disulfide bonds, C169-C176 and C224-C264, in the ßI domain of the ß2 subunit, and cleavage of the C224-C264 disulfide bond selectively controls Mac-1 disengagement from ICAM-1 under fluid shear. Molecular dynamics simulations and conformation-specific antibodies reveal that cleavage of the C224-C264 bond induces conformational change and mechanical stress in the ßI domain. This allosterically alters the exposure of an αI domain epitope associated with a shift of Mac-1 to a lower-affinity state. These molecular events promote neutrophil motility in the direction of flow at high shear stress. Inhibition of PDI by isoquercetin reduces neutrophil migration in the direction of flow on endothelial cells during inflammation. CONCLUSIONS: Shear-dependent PDI cleavage of the neutrophil Mac-1 C224-C264 disulfide bond triggers Mac-1 de-adherence from ICAM-1 at the trailing edge of the cell and enables directional movement of neutrophils during inflammation.


Assuntos
Molécula 1 de Adesão Intercelular , Antígeno de Macrófago 1 , Humanos , Antígeno de Macrófago 1/fisiologia , Adesão Celular/fisiologia , Células Endoteliais , Inflamação , Movimento Celular/fisiologia , Neutrófilos
9.
J Thromb Haemost ; 21(8): 2089-2100, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37059301

RESUMO

BACKGROUND: The von Willebrand factor (VWF) is a key player in regulating hemostasis through adhesion of platelets to sites of vascular injury. It is a large, multi-domain, mechano-sensitive protein that is stabilized by a net of disulfide bridges. Binding to platelet integrin is achieved by the VWF-C4 domain, which exhibits a fixed fold, even under conditions of severe mechanical stress, but only if critical internal disulfide bonds are closed. OBJECTIVE: To determine the oxidation state of disulfide bridges in the C4 domain of VWF and implications for VWF's platelet binding function. METHODS: We combined classical molecular dynamics and quantum mechanical simulations, mass spectrometry, site-directed mutagenesis, and platelet binding assays. RESULTS: We show that 2 disulfide bonds in the VWF-C4 domain, namely the 2 major force-bearing ones, are partially reduced in human blood. Reduction leads to pronounced conformational changes within C4 that considerably affect the accessibility of the integrin-binding motif, and thereby impair integrin-mediated platelet binding. We also reveal that reduced species in the C4 domain undergo specific thiol/disulfide exchanges with the remaining disulfide bridges, in a process in which mechanical force may increase the proximity of specific reactant cysteines, further trapping C4 in a state of low integrin-binding propensity. We identify a multitude of redox states in all 6 VWF-C domains, suggesting disulfide bond reduction and swapping to be a general theme. CONCLUSIONS: Our data suggests a mechanism in which disulfide bonds dynamically swap cysteine partners and control the interaction of VWF with integrin and potentially other partners, thereby critically influencing its hemostatic function.


Assuntos
Plaquetas , Fator de von Willebrand , Humanos , Plaquetas/metabolismo , Fator de von Willebrand/metabolismo , Domínios Proteicos , Ligação Proteica , Cisteína/metabolismo , Dissulfetos , Integrinas/metabolismo
10.
Biophys J ; 122(7): 1325-1333, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814382

RESUMO

The four-point-one ezrin-radixin-moesin homology (FERM) protein domain is a multifunctional protein-lipid binding site, constituting an integral part of numerous membrane-associated proteins. Its interaction with the lipid phosphatidylinositol-4,5-bisphosphate (PIP2), located at the inner leaflet of eukaryotic plasma membranes, is important for localization, anchorage, and activation of FERM-containing proteins. FERM-PIP2 complexes structurally determined so far exclusively feature a 1:1 binding stoichiometry of protein and lipid, with a few basic FERM residues neutralizing the -4 charge of the bound PIP2. Whether this picture from static crystal structures also applies to the dynamic interaction of FERM domains on PIP2 membranes is unknown. We here quantified the stoichiometry of FERM-PIP2 binding in a lipid bilayer using atomistic molecular dynamics simulations and experiments on solid supported membranes for the FERM domains of focal adhesion kinase and ezrin. In contrast to the structural data, we find much higher average stoichiometries of FERM-PIP2 binding, amounting to 1:3 or 1:4 ratios, respectively. In simulations, the full set of basic residues at the membrane interface, 7 and 15 residues for focal adhesion kinase and ezrin, respectively, engages in PIP2 interactions. In addition, Na ions enter the FERM-membrane binding interface, compensating negative PIP2 charges in case of high charge surpluses from bound PIP2. We propose the multivalent binding of FERM domains to PIP2 in lipid bilayers to significantly enhance the stability of FERM-membrane binding and to render the FERM-membrane linkage highly adjustable.


Assuntos
Domínios FERM , Bicamadas Lipídicas , Sítios de Ligação , Membrana Celular/metabolismo , Ligação Proteica , Bicamadas Lipídicas/química , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
11.
J Struct Biol ; 214(4): 107923, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410652

RESUMO

Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF's hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.


Assuntos
Fator de von Willebrand , Fator de von Willebrand/genética
12.
Blood Adv ; 6(17): 5198-5209, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36069828

RESUMO

Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D'D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D'D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D'D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.


Assuntos
Complexo de Golgi , Fator de von Willebrand , Sítios de Ligação , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Domínios Proteicos , Fator de von Willebrand/metabolismo
13.
Proteins ; 90(12): 2058-2066, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35833249

RESUMO

The von Willebrand disease (vWD) is the most common hereditary bleeding disorder caused by defects of the von Willebrand Factor (vWF), a large extracellular protein in charge of adhering platelets to sites of vascular lesions. vWF performs this essential homeostatic task via specific protein-protein interactions between the vWF A1 domain and the platelet receptor, the glycoprotein Ib alpha (GPIBα). The two naturally occurring vWF A1 domain mutations G1324A and G1324S, near the GPIBα binding site, induce a dramatic decrease in platelet adhesion, resulting in a bleeding disorder classified as type 2M vWD. However, the reason for the drastic phenotypic response induced by these two supposedly minor modifications remains unclear. We addressed this question using a combination of equilibrium-molecular dynamics (MD) and nonequilibrium MD-based free energy simulations. Our data confirms that both mutations maintain the highly stable Rossmann fold of the vWF A1 domain. G1324A and G1324S mutations hardly changed the per-residue flexibility of the A1 domain but induced a global conformational change affecting the region near the binding site to GPIBα. Furthermore, we observed two significant changes in the vWF A1 domain upon mutation, the global redistribution of the internal mechanical stress and the increased thermodynamic stability of the A1 domain. These observations are consistent with previously reported mutations increasing the melting temperature. Overall, our results support the idea of thermodynamic conformational restriction of A1-before the binding to GPIBα-as a crucial factor determining the loss-of-function of the G1324A(S) vWD mutants.


Assuntos
Doenças de von Willebrand , Fator de von Willebrand , Humanos , Sítios de Ligação , Plaquetas/metabolismo , Ligação Proteica , Termodinâmica , Doenças de von Willebrand/genética , Fator de von Willebrand/química , Fator de von Willebrand/genética
14.
Phys Chem Chem Phys ; 24(17): 9998-10010, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35412534

RESUMO

Poly(para-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force.


Assuntos
Polímeros , Polímeros/química , Termodinâmica
15.
Thromb Haemost ; 122(2): 226-239, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385180

RESUMO

The multimeric plasma glycoprotein (GP) von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet GPIIb/IIIa-dependent prothrombotic gain of function (GOF) for variant p.Pro2555Arg, located in the C4 domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy, molecular dynamics simulations on the single C4 domain, and dimeric wild-type and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF does not affect the binding affinity of the C4 domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet-binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and shows a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4 domain as a novel antithrombotic drug target.


Assuntos
Mutação com Ganho de Função , Variação Genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Fator de von Willebrand/genética , Mutação com Ganho de Função/genética , Hemostasia , Humanos , Agregação Plaquetária , Domínios Proteicos/genética , Doenças de von Willebrand/sangue , Fator de von Willebrand/metabolismo
16.
J Mol Biol ; 434(1): 167387, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34883116

RESUMO

The inner centromere protein, INCENP, is crucial for correct chromosome segregation during mitosis. It connects the kinase Aurora B to the inner centromere allowing this kinase to dynamically access its kinetochore targets. However, the function of its central, 440-residue long intrinsically disordered region (IDR) and its multiple phosphorylation sites is unclear. Here, we determined the conformational ensemble of INCENP's IDR, systematically varying the level of phosphorylation, using all-atom and coarse-grain molecular dynamics simulations. Our simulations show that phosphorylation expands INCENP's IDR, both locally and globally, mainly by increasing its overall net charge. The disordered region undergoes critical globule-to-coil conformational transitions and the transition temperature non-monotonically depends on the degree of phosphorylation, with a mildly phosphorylated case of neutral net charge featuring the highest collapse propensity. The IDR transitions from a multitude of globular states, accompanied by several specific internal contacts that reduce INCENP length by loop formation, to weakly interacting and highly extended coiled conformations. Phosphorylation critically shifts the population between these two regimes. It thereby influences cohesiveness and phase behavior of INCENP IDR assemblies, a feature presumably relevant for INCENP's function in the chromosomal passenger complex. Overall, we propose the disordered region of INCENP to act as a phosphorylation-regulated and length-variable component, within the previously defined "dog-leash" model, that thereby regulates how Aurora B reaches its targets for proper chromosome segregation.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Aurora Quinase B/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Transição de Fase , Fosforilação , Conformação Proteica em alfa-Hélice
17.
FEBS Lett ; 595(21): 2701-2714, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633077

RESUMO

Several antimicrobial peptides, including magainin and the human cathelicidin LL-37, act by forming pores in bacterial membranes. Bacteria such as Staphylococcus aureus modify their membrane's cardiolipin composition to resist such types of perturbations that compromise their membrane stability. Here, we used molecular dynamic simulations to quantify the role of cardiolipin on the formation of pores in simple bacterial-like membrane models composed of phosphatidylglycerol and cardiolipin mixtures. Cardiolipin modified the structure and ordering of the lipid bilayer, making it less susceptible to mechanical changes. Accordingly, the free-energy barrier for the formation of a transmembrane pore and its kinetic instability augmented by increasing the cardiolipin concentration. This is attributed to the unfavorable positioning of cardiolipin near the formed pore, due to its small polar head and bulky hydrophobic body. Overall, our study demonstrates how cardiolipin prevents membrane-pore formation and this constitutes a plausible mechanism used by bacteria to act against stress perturbations and, thereby, gain resistance to antimicrobial agents.


Assuntos
Membrana Celular , Fosfatidilgliceróis , Cardiolipinas , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Staphylococcus aureus
19.
J Phys Chem B ; 124(41): 9061-9078, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954729

RESUMO

The metabotropic glutamate receptor (mGluR) 2 plays a key role in the central nervous system. mGluR2 has been shown to be regulated by its surrounding lipid environment, especially by cholesterol, by an unknown mechanism. Here, using a combination of biochemical approaches, photo-cross-linking experiments, and molecular dynamics simulations we show the interaction of cholesterol with at least two, but potentially five more, preferential sites on the mGluR2 transmembrane domain. Our simulations demonstrate that surface matching, rather than electrostatic interactions with specific amino acids, is the main factor defining cholesterol localization. Moreover, the cholesterol localization observed here is similar to the sterol-binding pattern previously described in silico for other members of the mGluR family. Biochemical assays suggest little influence of cholesterol on trafficking or dimerization of mGluR2. Nevertheless, simulations revealed a significant reduction of residue-residue contacts together with an alteration in the internal mechanical stress at the cytoplasmic side of the helical bundle when cholesterol was present in the membrane. These alterations may be related to destabilization of the basal state of mGluR2. Due to the high sequence conservation of the transmembrane domains of mGluRs, the molecular interaction of cholesterol and mGluR2 described here is also likely to be relevant for other members of the mGLuR family.


Assuntos
Receptores de Glutamato Metabotrópico , Aminoácidos , Colesterol
20.
Nucleic Acids Res ; 48(13): 7333-7344, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32496552

RESUMO

Neutrophils release their intracellular content, DNA included, into the bloodstream to form neutrophil extracellular traps (NETs) that confine and kill circulating pathogens. The mechanosensitive adhesive blood protein, von Willebrand Factor (vWF), interacts with the extracellular DNA of NETs to potentially immobilize them during inflammatory and coagulatory conditions. Here, we elucidate the previously unknown molecular mechanism governing the DNA-vWF interaction by integrating atomistic, coarse-grained, and Brownian dynamics simulations, with thermophoresis, gel electrophoresis, fluorescence correlation spectroscopy (FCS), and microfluidic experiments. We demonstrate that, independently of its nucleotide sequence, double-stranded DNA binds to a specific helix of the vWF A1 domain, via three arginines. This interaction is attenuated by increasing the ionic strength. Our FCS and microfluidic measurements also highlight the key role shear-stress has in enabling this interaction. Our simulations attribute the previously-observed platelet-recruitment reduction and heparin-size modulation, upon establishment of DNA-vWF interactions, to indirect steric hindrance and partial overlap of the binding sites, respectively. Overall, we suggest electrostatics-guiding DNA to a specific protein binding site-as the main driving force defining DNA-vWF recognition. The molecular picture of a key shear-mediated DNA-protein interaction is provided here and it constitutes the basis for understanding NETs-mediated immune and hemostatic responses.


Assuntos
DNA/química , Simulação de Acoplamento Molecular , Fator de von Willebrand/química , Sítios de Ligação , DNA/metabolismo , Humanos , Simulação de Dinâmica Molecular , Concentração Osmolar , Ligação Proteica , Eletricidade Estática , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA