Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pharmaceutics ; 15(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896252

RESUMO

Generally, NSAIDs are weakly soluble in water and contain both hydrophilic and hydrophobic groups. One of the most widely used NSAIDs is ibuprofen, which has a poor solubility and high permeability profile. By creating dynamic, non-covalent, water-soluble inclusion complexes, cyclodextrins (CDs) can increase the dissolution rate of low aqueous solubility drugs, operating as a drug delivery vehicle, additionally contributing significantly to the chemical stability of pharmaceuticals and to reducing drug-related irritability. In order to improve the pharmacological and pharmacokinetics profile of ibuprofen, new thiazolidin-4-one derivatives of ibuprofen (4b, 4g, 4k, 4m) were complexed with ß-CD, using co-precipitation and freeze-drying. The new ß-CD complexes (ß-CD-4b, ß-CD-4g, ß-CD-4k, ß-CD-4m) were characterized using scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction and a phase solubility test. Using the AutoDock-VINA algorithm included in YASARA-structure software, we investigated the binding conformation of ibuprofen derivatives to ß-CD and measured the binding energies. We also performed an in vivo biological evaluation of the ibuprofen derivatives and corresponding ß-CD complexes, using analgesic/anti-inflammatory assays, as well as a release profile. The results support the theory that ß-CD complexes (ß-CD-4b, ß-CD-4g, ß-CD-4k, ß-CD-4m) have a similar effect to ibuprofen derivatives (4b, 4g, 4k, 4m). Moreover, the ß-CD complexes demonstrated a delayed release profile, which provides valuable insights into the drug-delivery area, focused on ibuprofen derivatives.

2.
Toxics ; 10(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36287862

RESUMO

Pesticide poisoning in pediatric patients is still an important reason for presenting to the emergency department in Romania. In this context, the present study aims to raise awareness of the toxicological impact of pesticides on human health in pediatrics. For this purpose, the demographic characteristics, clinical assessment, and outcome of pediatric patients with acute pesticide poisoning admitted to the toxicology department of "Saint Mary" Emergency Children's Hospital from Iasi, were analyzed. This retrospective study focused on the clinical and laboratory data of patients aged under 18 years diagnosed with acute pesticide poisoning between 2010-2020. The statistical analysis was performed using the Statistica 10 package. A total of 49 patients presented with manifestations of acute pesticide poisoning, and the most common pesticide involved was diazinon. The most frequent exposure route was accidentally ingesting pesticide products (95%). The primary clinical manifestations were toxic encephalopathy, coma, depressive disorder, gastric disorders, and respiratory failure. Changes in the glycemic status, liver, and kidney damage were also present. Treatment included decontamination, administration of antidote, supportive care, and recommendations to be closely monitored to avoid a new incident. These results highlight the toxic potential of pesticides on human health and their biological consequences, which require an increase in consciousness of the precautions imposed on their use, especially when children are nearby.

3.
Pharmaceutics ; 13(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924046

RESUMO

In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized.

4.
BMC Pharmacol Toxicol ; 22(1): 10, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541432

RESUMO

BACKGROUND: Aryl-propionic acid derivatives with ibuprofen as representative drug are very important for therapy, being recommended especially for anti-inflammatory and analgesic effects. On other hand 1,3-thiazolidine-4-one scaffold is an important heterocycle, which is associated with different biological effects such as anti-inflammatory and analgesic, antioxidant, antiviral, antiproliferative, antimicrobial etc. The present study aimed to evaluated the toxicity degree and the anti-inflammatory and analgesic effects of new 1,3-thiazolidine-4-one derivatives of ibuprofen. METHODS: For evaluation the toxicity degree, cell viability assay using MTT method and acute toxicity assay on rats were applied. The carrageenan-induced paw-edema in rat was used for evaluation of the anti-inflammatory effect while for analgesic effect the tail-flick test, as thermal nociception in rats and the writhing assay, as visceral pain in mice, were used. RESULTS: The toxicological screening, in terms of cytotoxicity and toxicity degree on mice, revealed that the ibuprofen derivatives (4a-n) are non-cytotoxic at 2 µg/ml. In addition, ibuprofen derivatives reduced carrageenan-induced paw edema in rats, for most of them the maximum effect was recorded at 4 h after administration which means they have medium action latency, similar to that of ibuprofen. Moreover, for compound 4d the effect was higher than that of ibuprofen, even after 24 h of administration. The analgesic effect evaluation highlighted that 4 h showed increased pain inhibition in reference to ibuprofen in thermal (tail-flick assay) and visceral (writhing assay) nociception models. CONCLUSIONS: The study revealed for ibuprofen derivatives, noted as 4 m, 4 k, 4e, 4d, a good anti-inflammatory and analgesic effect and also a safer profile compared with ibuprofen. These findings could suggest the promising potential use of them in the treatment of inflammatory pain conditions.


Assuntos
Analgésicos , Anti-Inflamatórios não Esteroides , Edema/tratamento farmacológico , Ibuprofeno , Dor/tratamento farmacológico , Tiazolidinas , Ácido Acético , Analgésicos/uso terapêutico , Analgésicos/toxicidade , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/toxicidade , Carragenina , Sobrevivência Celular/efeitos dos fármacos , Edema/induzido quimicamente , Temperatura Alta/efeitos adversos , Ibuprofeno/análogos & derivados , Ibuprofeno/uso terapêutico , Ibuprofeno/toxicidade , Dose Letal Mediana , Camundongos , Dor/induzido quimicamente , Ratos Wistar , Tiazolidinas/uso terapêutico , Tiazolidinas/toxicidade
5.
Materials (Basel) ; 12(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781782

RESUMO

In the past many research studies have focused on the thiazolidine-4-one scaffold, due to the important biological effects associated with its heterocycle. This scaffold is present in the structure of many synthetic compounds, which showed significant biological effects such as antimicrobial, antifungal, antioxidant, anti-inflammatory, analgesic, antidiabetic effects. It was also identified in natural compounds, such as actithiazic acid, isolated from Streptomyces strains. Starting from this scaffold new xanthine derivatives have been synthetized and evaluated for their antibacterial and antifungal effects. The antibacterial action was investigated against Gram positive (Staphyloccoccus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922) bacterial strains. The antifungal potential was investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). In order to improve the antimicrobial activity, the most active xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) were included in a chitosan based polymeric matrix (CS). The developed polymeric systems (CS-XTDs) were characterized in terms of morphological (aspect, particle size), physic-chemical properties (swelling degree), antibacterial and antifungal activities, toxicity, and biological functions (bioactive compounds loading, entrapment efficiency). The presence of xanthine-thiazolidine-4-one derivatives into the chitosan matrix was confirmed using Fourier transform infrared (FT-IR) analysis. The size of developed polymeric systems, CS-XTDs, ranged between 614 µm and 855 µm, in a dry state. The XTDs were encapsulated into the chitosan matrix with very good loading efficiency, the highest entrapment efficiency being recorded for CS-6k, which ranged between 87.86 ± 1.25% and 93.91 ± 1.41%, depending of the concentration of 6k. The CS-XTDs systems showed an improved antimicrobial effect with respect to the corresponding XTDs. Good results were obtained for CS-6f, for which the effects on Staphylococcus aureus ATCC 25923 (21.2 ± 0.43 mm) and Sarcina lutea ATCC 9341 (25.1 ± 0.28 mm) were comparable with those of ciprofloxacin (25.1 ± 0.08 mm/25.0 ± 0.1 mm), which were used as the control. The CS-6f showed a notable antifungal effect, especially on Candida parapsilosis ATCC 22019 (18.4 ± 0.42 mm), the effect being comparable to those of nystatin (20.1 ± 0.09 mm), used as the control. Based on the obtained results these polymeric systems, consisting of thiazolidine-4-one derivatives loaded with chitosan microparticles, could have important applications in the food field as multifunctional (antimicrobial, antifungal, antioxidant) packaging materials.

6.
J Org Chem ; 82(24): 13700-13707, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29131628

RESUMO

This work reports the design of [1,3,4]thiadiazolo[3',2':1,2]imidazo[4,5-c]quinolines using a Pictet-Spengler reaction. The scope of the reaction was achieved from 6-(2-aminophenyl)imidazo[2,1-b][1,3,4]thiadiazole derivatives and available aldehydes. A wide range of aldehydes were employed to examine the scope of the cyclization. In parallel, a mechanism investigation was realized and showed a hydride transfer which led to a dismutation of the intermediate species. To complete this methodological study, a "sequential" oxidation/SNAr procedure was performed to achieve C-2 nucleophilic substitution using several amine types.

7.
Chem Cent J ; 11: 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28203273

RESUMO

BACKGROUND: The xanthine structure has proved to be an important scaffold in the process of developing a wide variety of biologically active molecules such as bronchodilator, hypoglycemiant, anticancer and anti-inflammatory agents. It is known that hyperglycemia generates reactive oxygen species which are involved in the progression of diabetes mellitus and its complications. Therefore, the development of new compounds with antioxidant activity could be an important therapeutic strategy against this metabolic syndrome. RESULTS: New thiazolidine-4-one derivatives with xanthine structure have been synthetized as potential antidiabetic drugs. The structure of the synthesized compounds was confirmed by using spectral methods (FT-IR, 1H-NMR, 13C-NMR, 19F-NMR, HRMS). Their antioxidant activity was evaluated using in vitro assays: DPPH and ABTS radical scavenging ability and phosphomolybdenum reducing antioxidant power assay. The developed compounds showed improved antioxidant effects in comparison to the parent compound, theophylline. In the case of both series, the intermediate (5a-k) and final compounds (6a-k), the aromatic substitution, especially in para position with halogens (fluoro, chloro), methyl and methoxy groups, was associated with an increase of the antioxidant effects. CONCLUSIONS: For several thiazolidine-4-one derivatives the antioxidant effect of was superior to that of their corresponding hydrazone derivatives. The most active compound was 6f which registered the highest radical scavenging activity.Graphical abstractDesign and synthesis of new thiazolidine-4-one derivatives.

8.
Chem Cent J ; 10: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26855668

RESUMO

BACKGROUND: l-Arginine is a semi-essential aminoacid with important role in regulation of physiological processes in humans. It serves as precursor for the synthesis of proteins and is also substrate for different enzymes such as nitric oxide synthase. This amino-acid act as free radical scavenger, inhibits the activity of pro-oxidant enzymes and thus acts as an antioxidant and has also bactericidal effect against a broad spectrum of bacteria. RESULTS: New thiazolidine-4-one derivatives of nitro-l-arginine methyl ester (NO2-Arg-OMe) have been synthesized and biologically evaluated in terms of antioxidant and antibacterial/antifungal activity. The structures of the synthesized compounds were confirmed by (1)H, (13)C NMR, Mass and IR spectral data. The antioxidant potential was investigated using in vitro methods based on ferric/phosphomolybdenum reducing antioxidant power and DPPH/ABTS radical scavenging assay. The antibacterial effect was investigated against Gram positive (Staphylococcus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacterial strains. The antifungal activity was also investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). CONCLUSIONS: Synthesized compounds showed a good antioxidant activity in comparison with the NO2-Arg-OMe. The antimicrobial results support the selectivity of tested compounds especially on P. aeruginosa as bacterial strain and C. parapsilosis as fungal strain. The most proper compounds were 6g (R = 3-OCH3) and 6h (R = 2-OCH3) which showed a high free radical (DPPH, ABTS) scavenging ability and 6j (R = 2-NO2) that was the most active on both bacterial and fungal strains and also it showed the highest ABTS radical scavenging ability.Graphical abstract1: ethyl 3-aminopropionate hydrochloride, 2a-j: aromatic aldehydes, 3: thioglycolic acid, 4a-j: thiazolidine-propionic acid derivatives , 5: Nω-nitro-L-arginine methyl ester hydrochloride, 6a-j: thiazolidine-propionyl-nitro-L-arginine methyl ester derivatives.

9.
Molecules ; 19(9): 13824-47, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25255761

RESUMO

New thiazolidine-4-one derivatives based on the 4-aminophenazone (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) scaffold have been synthesized as potential anti-inflammatory drugs. The pyrazoline derivatives are known especially for their antipyretic, analgesic and anti-inflammatory effects, but recently there were synthesized new compounds with important antioxidant, antiproliferative, anticancer and antidiabetic activities. The beneficial effects of these compounds are explained by nonselective inhibition of cyclooxygenase izoenzymes, but also by their potential scavenging ability for reactive oxygen and nitrogen species. The structure of the new compounds was proved using spectroscopic methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the ferric reducing antioxidant power, phosphomolydenum reducing antioxidant power, DPPH and ABTS radical scavenging assays. The chemical modulation of 4-aminophenazone (6) through linkage to thiazolidine-propanoic acid derivatives 5a-l led to improved antioxidant potential, all derivatives 7a-l being more active than phenazone. The most active compounds are the derivatives 7e, and 7k, which showed the higher antioxidant effect depending on the antioxidant assay considered.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Pirazóis/química , Tiazolidinas/química , Tiazolidinas/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Espectroscopia de Ressonância Magnética , Tiazolidinas/síntese química
10.
Molecules ; 19(9): 15005-25, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25237755

RESUMO

New thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid (ibuprofen) have been synthesized as potential anti-inflammatory drugs. The structure of the new compounds was proved using spectral methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the total antioxidant activity, the DPPH and ABTS radical scavenging assays. Reactive oxygen species (ROS) and free radicals are considered to be involved in many pathological events like diabetes mellitus, neurodegenerative diseases, cancer, infections and more recently, in inflammation. It is known that overproduction of free radicals may initiate and amplify the inflammatory process via upregulation of genes involved in the production of proinflammatory cytokines and adhesion molecules. The chemical modulation of acyl hydrazones of ibuprofen 3a-l through cyclization to the corresponding thiazolidine-4-ones 4a-n led to increased antioxidant potential, as all thiazolidine-4-ones were more active than their parent acyl hydrazones and also ibuprofen. The most active compounds are the thiazolidine-4-ones 4e, m, which showed the highest DPPH radical scavenging ability, their activity being comparable with vitamin E.


Assuntos
Propionatos/síntese química , Propionatos/farmacologia , Antioxidantes/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Propionatos/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Rev Med Chir Soc Med Nat Iasi ; 118(1): 213-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24741803

RESUMO

AIM: To design new thiazolidin-4-ones derivatives and to evaluate their potential antioxidant effects using in vitro methods. MATERIAL AND METHODS: New ethyl esters of the 2-(R-phenyl)-4-oxo-thiazolidin-3-yl propionic acid were synthesized using "one step reaction" between different aromatic aldehydes, thioglycolic acid and beta-alanine ethyl ester hydrochloride. The antioxidant potential of the synthesized compounds was evaluated using the DPPH radical scavenging assay and phosphomolybdenum method. RESULTS: Eight thiazolidine-4-one derivatives were obtained in good yields and high purity. The structure of the synthesized compounds was confirmed using IR spectroscopy. The evaluation of antioxidant activity showed that 2-[(4-NO2)-phenyl]-4-oxo-thiazolidin-3-yl propionic acid ethyl ester (compound 16) was the most active compound. For this derivative the DPPH radical scavenger activity (I% = 91.63% +/- 0.77) and the total antioxidant capacity (absorbance = 1.0691 +/- 0.0763) were similar with that of ascorbic acid used as standard antioxidant. CONCLUSIONS: The antioxidant activity of the thiazolidine-4-one derivatives depends on the nature of the phenyl ring substituents, the NO2 and OH radicals having the most significant influence.


Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Tiazolidinas/síntese química , Tiazolidinas/farmacologia , Aldeídos/síntese química , Antioxidantes/química , Cloretos/síntese química , Ésteres/síntese química , Sequestradores de Radicais Livres , Espectroscopia de Infravermelho com Transformada de Fourier , Tiazolidinas/química , Tioglicolatos/síntese química , beta-Alanina/síntese química
12.
Rev Med Chir Soc Med Nat Iasi ; 118(1): 219-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24741804

RESUMO

UNLABELLED: Ibuprofen, an important nonsteroidal anti-inflammatory agent, is one of the most prescribed drugs for the treatment of pain and inflammation from various rheumatic diseases, but some side effects can occur on long-term use. AIM: The method for synthesis optimization of new derivatives of Ibuprofen with thiazolidin-4-one moiety, with improved pharmacological and toxicological profile. MATERIAL AND METHODS: To optimize the derivatization method of free carboxyl group of Ibuprofen (2-(4-isobutylphenyl)propionic acid) the reaction conditions were varied (reagent ratio, catalyst, reaction medium). RESULTS: The most favorable method was proved to be the reaction between ibuprofen hydrazone and mercaptoacetic acid, in excess, at 80-85 degrees C, for 6 h with 96% conversion rate. CONCLUSIONS: The synthesis of 2-phenyl-3-[2-(4-(isobutyl)phenyl)-2-methyl]acetamido-thiazolidin-4-one derivative was optimized in view of applying it as a general procedure for the synthesis of other derivatives with related structure. The chemical structure and molecular weight of the synthesized compound were confirmed by spectral methods (IR, 1H NMR, 13C NMR, HR-MS).


Assuntos
Antioxidantes/síntese química , Ibuprofeno , Tiazolidinas/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Ibuprofeno/química , Ibuprofeno/farmacologia , Espectrofotometria , Tiazolidinas/química , Tiazolidinas/farmacologia
13.
Rev Med Chir Soc Med Nat Iasi ; 118(4): 1150-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25581982

RESUMO

UNLABELLED: The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. AIM: The synthesis of new ferulic acid compounds with potential antioxidant activity. MATERIAL AND METHODS: The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. RESULTS: The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. CONCLUSIONS: In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.


Assuntos
Antioxidantes/síntese química , Ácidos Cumáricos/síntese química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Aterosclerose/tratamento farmacológico , Benzaldeídos/síntese química , Humanos , Hidrazinas/síntese química , Hidrazonas/uso terapêutico , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Óxidos de Enxofre/síntese química
14.
Rev Med Chir Soc Med Nat Iasi ; 117(2): 532-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340542

RESUMO

AIM: To design new derivatives of aryl-propionic acid with potential antibacterial and antioxidant activity. MATERIAL AND METHODS: New hydrazone of ibuprofen (2-(4-isobutylphenyl)propionic acid) have been synthesized by reaction of ethyl ester of ibuprofen with hydrazine hydrate and then condensation of corresponding hydrazide with various aromatic aldehydes. RESULTS: The synthesized compounds were screened for their antibacterial activity against Gram positive (Staphylococcus aureus ATCC 25923, Sarcinalutea ATCC 9341, Bacillus cereus ATCC 14579, Bacillus subtilis) and Gram negative bacterial strains (Escherichia coli ATCC 25922). Some of them were found to have good antibacterial activity. The antioxidant activity of these compounds was also tested using the total antiox idant capacity test. CONCLUSIONS: The chemical modulations performed on ibuprofen structure have a good influence on the biological activity of the synthesized compounds.


Assuntos
Antibacterianos/síntese química , Anti-Inflamatórios não Esteroides/síntese química , Antineoplásicos/síntese química , Antioxidantes/síntese química , Hidrazinas/síntese química , Hidrazonas/síntese química , Ibuprofeno/análogos & derivados , Ibuprofeno/síntese química , Propionatos/síntese química , Aldeídos/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Ibuprofeno/química , Ibuprofeno/farmacologia , Testes de Sensibilidade Microbiana , Propionatos/química , Propionatos/farmacologia
15.
Rev Med Chir Soc Med Nat Iasi ; 117(2): 538-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340543

RESUMO

AIM: To design new hydrazones with pyrazolone structure with improved biological properties. MATERIAL AND METHODS: New hydrazones of antipyrine have been prepared by reaction of 4-aminophenazone (4-aminoantipyrine) with chloracetylchoride and hydrazine hydrate and then condensation with various aromatic aldehydes. RESULTS: The synthesized compounds were screened for their antibacterial activity against Gram positive (Staphylococcus aureus ATCC 25923, Sarcinalutea ATCC 9341, Bacillus cereus ATCC 14579, Bacillus subtilis) and Gram negative bacterial strains (Escherichia coli ATCC 25922) and pathogenic yeasts (Candida albicans ATCC 10231, Candida sake, Candidaglabrata). Some of them were found to have good antibacterial and antifungal activity. The antioxidant activity of these compounds was also evaluated using the total antioxidant capacity test. CONCLUSIONS: The chemical modulations performed on antipyrine structure have a good influence on the biological activity of the synthesized compounds.


Assuntos
Ampirona/síntese química , Antibacterianos/síntese química , Anti-Inflamatórios não Esteroides/síntese química , Antifúngicos/síntese química , Antioxidantes/síntese química , Hidrazonas/síntese química , Pirazolonas , Ampirona/química , Ampirona/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia em Camada Fina/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrazonas/química , Hidrazonas/farmacologia , Testes de Sensibilidade Microbiana , Pirazolonas/síntese química
16.
Rev Med Chir Soc Med Nat Iasi ; 117(1): 244-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24505923

RESUMO

UNLABELLED: The International Diabetes Federation reported that 246 million adults worldwide had diabetes mellitus and the prevalence of this syndrome was expected to increase continuously. AIM: To design new compound with potential antidiabetic and antioxidant activity. MATERIAL AND METHODS: New benzylidene-thiazolidine derivatives (BT2a-2e) were obtained by condensation of xanthine-thiazolidine-4-one (TZ-4-one) with aromatic aldehydes. The synthesized compounds were characterized by spectral method (IR, 1H-NMR, 13C-NMR) and their antioxidant potential has been also evaluated. RESULTS: The synthesized compounds have important antioxidant effects as compared to xanthine-thiazolidine derivatives. The most active compounds were those obtained by condensation with 4-dimethylaminobenzaldehyde (BT2c) and 4-nitro-benzaldehyde (BT2e). CONCLUSIONS: The chemical modulations performed on the structure of TZD-4-one have a good influence on their antioxidant potential.


Assuntos
Aldeídos/síntese química , Antioxidantes/síntese química , Compostos de Benzilideno/síntese química , Hipoglicemiantes/síntese química , Tiazolidinas/síntese química , Xantina/síntese química , Aldeídos/química , Aldeídos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Espectrofotometria/métodos , Tiazolidinas/química , Tiazolidinas/farmacologia , Xantina/química , Xantina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA