Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Sci Total Environ ; 914: 169987, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211861

RESUMO

Mobile monitoring can supplement regulatory measurements, particularly in low-income countries where stationary monitoring is sparse. Here, we report results from a ~ year-long mobile monitoring campaign of on-road concentrations of black carbon (BC), ultrafine particles (UFP), and carbon dioxide (CO2) in Bengaluru, India. The study route included 150 unique kms (average: ~22 repeat measurements per monitored road segment). After cleaning the data for known instrument artifacts and sensitivities, we generated 30 m high-resolution stable 'data only' spatial maps of BC, UFP, and CO2 for the study route. For the urban residential areas, the mean BC levels for residential roads, arterials, and highways were ~ 10, 22, and 56 µg m-3, respectively. A similar pattern (highways being characterized by highest pollution levels) was also observed for UFP and CO2. Using the data from repeat measurements, we carried out a Monte Carlo subsampling analysis to understand the minimum number of repeat measures to generate stable maps of pollution in the city. Leveraging the simultaneous nature of the measurements, we also mapped the quasi-emission factors (QEF) of the pollutants under investigation. The current study is the first multi-season mobile monitoring exercise conducted in a low or middle -income country (LMIC) urban setting that oversampled the study route and investigated the optimum number of repeat rides required to achieve representative pollution spatial patterns characterized with high precision and low bias. Finally, the results are discussed in the context of technical aspects of the campaign, limitations, and their policy relevance for our study location and for other locations. Given the day-to-day variability in the pollution levels, the presence of dynamic and unorganized sources, and active government pollution mitigation policies, multi-year mobile measurement campaigns would help test the long-term representativeness of the current results.

3.
Proc Natl Acad Sci U S A ; 120(50): e2308832120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048461

RESUMO

Building conditions, outdoor climate, and human behavior influence residential concentrations of fine particulate matter (PM2.5). To study PM2.5 spatiotemporal variability in residences, we acquired paired indoor and outdoor PM2.5 measurements at 3,977 residences across the United States totaling >10,000 monitor-years of time-resolved data (10-min resolution) from the PurpleAir network. Time-series analysis and statistical modeling apportioned residential PM2.5 concentrations to outdoor sources (median residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, CV = 112%). Residences in the temperate marine climate zone experienced higher infiltration factors, consistent with expectations for more time with open windows in milder climates. Likewise, for all climate zones, infiltration factors were highest in summer and lowest in winter, decreasing by approximately half in most climate zones. Large outdoor-indoor temperature differences were associated with lower infiltration factors, suggesting particle losses from active filtration occurred during heating and cooling. Absolute contributions from both outdoor and indoor sources increased during wildfire events. Infiltration factors decreased during periods of high outdoor PM2.5, such as during wildfires, reducing potential exposures from outdoor-origin particles but increasing potential exposures to indoor-origin particles. Time-of-day analysis reveals that episodic emission events are most frequent during mealtimes as well as on holidays (Thanksgiving and Christmas), indicating that cooking-related activities are a strong episodic emission source of indoor PM2.5 in monitored residences.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Crowdsourcing , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Tamanho da Partícula
4.
Environ Health Perspect ; 131(12): 125003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109120

RESUMO

BACKGROUND: Recently enacted environmental justice policies in the United States at the state and federal level emphasize addressing place-based inequities, including persistent disparities in air pollution exposure and associated health impacts. Advances in air quality measurement, models, and analytic methods have demonstrated the importance of finer-scale data and analysis in accurately quantifying the extent of inequity in intraurban pollution exposure, although the necessary degree of spatial resolution remains a complex and context-dependent question. OBJECTIVE: The objectives of this commentary were to a) discuss ways to maximize and evaluate the effectiveness of efforts to reduce air pollution disparities, and b) argue that environmental regulators must employ improved methods to project, measure, and track the distributional impacts of new policies at finer geographic and temporal scales. DISCUSSION: The historic federal investments from the Inflation Reduction Act, the Infrastructure Investment and Jobs Act, and the Biden Administration's commitment to Justice40 present an unprecedented opportunity to advance climate and energy policies that deliver real reductions in pollution-related health inequities. In our opinion, scientists, advocates, policymakers, and implementing agencies must work together to harness critical advances in air quality measurements, models, and analytic methods to ensure success. https://doi.org/10.1289/EHP13063.


Assuntos
Poluição do Ar , Poluição do Ar/prevenção & controle , Poluição Ambiental , Clima , Política Ambiental
5.
Artigo em Inglês | MEDLINE | ID: mdl-38135708

RESUMO

BACKGROUND: National-scale linear regression-based modeling may mischaracterize localized patterns, including hyperlocal peaks and neighborhood- to regional-scale gradients. For studies focused on within-city differences, this mischaracterization poses a risk of exposure misclassification, affecting epidemiological and environmental justice conclusions. OBJECTIVE: Characterize the difference between intraurban pollution patterns predicted by national-scale land use regression modeling and observation-based estimates within a localized domain and examine the relationship between that difference and urban infrastructure and demographics. METHODS: We compare highly resolved (0.01 km2) observations of NO2 mixing ratio and ultrafine particle (UFP) count obtained via mobile monitoring with national model predictions in thirteen neighborhoods in the San Francisco Bay Area. Grid cell-level divergence between modeled and observed concentrations is termed "localized difference." We use a flexible machine learning modeling technique, Bayesian Additive Regression Trees, to investigate potentially nonlinear relationships between discrepancy between localized difference and known local emission sources as well as census block group racial/ethnic composition. RESULTS: We find that observed local pollution extremes are not represented by land use regression predictions and that observed UFP count significantly exceeds regression predictions. Machine learning models show significant nonlinear relationships among localized differences between predictions and observations and the density of several types of pollution-related infrastructure (roadways, commercial and industrial operations). In addition, localized difference was greater in areas with higher population density and a lower share of white non-Hispanic residents, indicating that exposure misclassification by national models differs among subpopulations. IMPACT: Comparing national-scale pollution predictions with hyperlocal observations in the San Francisco Bay Area, we find greater discrepancies near major roadways and food service locations and systematic underestimation of concentrations in neighborhoods with a lower share of non-Hispanic white residents. These findings carry implications for using national-scale models in intraurban epidemiological and environmental justice applications and establish the potential utility of supplementing large-scale estimates with publicly available urban infrastructure and pollution source information.

6.
Nat Commun ; 14(1): 5349, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660164

RESUMO

Ambient fine particulate matter (PM2.5) is the world's leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM2.5 exposure. Here we interpret satellite-derived PM2.5 estimates over 1998-2019 and find a reversal of previous growth in global PM2.5 air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM2.5 exposure, related to both pollution levels and population size, increased from 1998 (28.3 µg/m3) to a peak in 2011 (38.9 µg/m3) and decreased steadily afterwards (34.7 µg/m3 in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM2.5-attributable mortality and increasing health benefits per µg/m3 marginal reduction in exposure, implying increasing urgency and benefits of PM2.5 mitigation with aging population and cleaner air.


Assuntos
Poluição do Ar , Poluição do Ar/efeitos adversos , Poluição Ambiental , África , Material Particulado/efeitos adversos
8.
Proc Natl Acad Sci U S A ; 119(44): e2205548119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279443

RESUMO

Air pollution levels in the United States have decreased dramatically over the past decades, yet national racial-ethnic exposure disparities persist. For ambient fine particulate matter ([Formula: see text]), we investigate three emission-reduction approaches and compare their optimal ability to address two goals: 1) reduce the overall population average exposure ("overall average") and 2) reduce the difference in the average exposure for the most exposed racial-ethnic group versus for the overall population ("national inequalities"). We show that national inequalities in exposure can be eliminated with minor emission reductions (optimal: ~1% of total emissions) if they target specific locations. In contrast, achieving that outcome using existing regulatory strategies would require eliminating essentially all emissions (if targeting specific economic sectors) or is not possible (if requiring urban regions to meet concentration standards). Lastly, we do not find a trade-off between the two goals (i.e., reducing overall average and reducing national inequalities); rather, the approach that does the best for reducing national inequalities (i.e., location-specific strategies) also does as well as or better than the other two approaches (i.e., sector-specific and meeting concentration standards) for reducing overall averages. Overall, our findings suggest that incorporating location-specific emissions reductions into the US air quality regulatory framework 1) is crucial for eliminating long-standing national average exposure disparities by race-ethnicity and 2) can benefit overall average exposures as much as or more than the sector-specific and concentration-standards approaches.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos , Humanos , Poluentes Atmosféricos/análise , Etnicidade , Exposição Ambiental/prevenção & controle , Exposição Ambiental/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Material Particulado/análise
9.
ACS Earth Space Chem ; 6(10): 2432-2445, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36303716

RESUMO

India experiences some of the highest levels of ambient PM2.5 aerosol pollution in the world. However, due to the historical dearth of in situ measurements, chemical transport models that are often used to estimate PM2.5 exposure over the region are rarely evaluated. Here, we conduct a novel model comparison with speciated airborne measurements of fine aerosol, revealing large biases in the ammonium and nitrate simulations. To address this, we incorporate process-level changes to the model and use satellite observations from the Cross-track Infrared Sounder (CrIS) and the TROPOspheric Monitoring Instrument (TROPOMI) to constrain ammonia and nitrogen oxide emissions. The resulting simulation demonstrates significantly lower bias (NMBModified: 0.19; NMBBase: 0.61) when validated against the airborne aerosol measurements, particularly for the nitrate (NMBModified: 0.08; NMBBase: 1.64) and ammonium simulation (NMBModified: 0.49; NMBBase: 0.90). We use this validated simulation to estimate a population-weighted annual PM2.5 exposure of 61.4 µg m-3, with the RCO (residential, commercial, and other) and energy sectors contributing 21% and 19%, respectively, resulting in an estimated 961,000 annual PM2.5-attributable deaths. Regional exposure and sectoral source contributions differ meaningfully in the improved simulation (compared to the baseline simulation). Our work highlights the critical role of speciated observational constraints in developing accurate model-based PM2.5 aerosol source attribution for health assessments and air quality management in India.

10.
Environ Sci Technol Lett ; 9(9): 786-791, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36118958

RESUMO

Air pollution exposure disparities by race/ethnicity and socioeconomic status have been analyzed using data aggregated at various spatial scales. Our research question is this: To what extent does the spatial scale of data aggregation impact the estimated exposure disparities? We compared disparities calculated using data spatially aggregated at five administrative scales (state, county, census tract, census block group, census block) in the contiguous United States in 2010. Specifically, for each of the five spatial scales, we calculated national and intraurban disparities in exposure to fine particles (PM2.5) and nitrogen dioxide (NO2) by race/ethnicity and socioeconomic characteristics using census demographic data and an empirical statistical air pollution model aggregated at that scale. We found, for both pollutants, that national disparity estimates based on state and county scale data often substantially underestimated those estimated using tract and finer scales; in contrast, national disparity estimates were generally consistent using tract, block group, and block scale data. Similarly, intraurban disparity estimates based on tract and finer scale data were generally well correlated for both pollutants across urban areas, although in some cases intraurban disparity estimates were substantially different, with tract scale data more frequently leading to underestimates of disparities compared to finer scale analyses.

11.
Environ Monit Assess ; 194(9): 610, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876898

RESUMO

Optical PM2.5 measurements are sensitive to aerosol properties that can vary with space and time. Here, we compared PM2.5 measurements from collocated reference-grade (beta attenuation monitors, BAMs) and optical instruments (two DustTrak II and two DustTrak DRX) over 6 months. We performed inter-model (two different models), intra-model (two units of the same model), and inter-type (two different device types: optical vs. reference-grade) comparisons under ambient conditions. Averaged over our study period, PM2.5 measured concentrations were 46.0 and 45.5 µg m-3 for the two DustTrak II units, 29.8 and 38.4 µg m-3 for DRX units, and 18.3 and 19.0 µg m-3 for BAMs. The normalized root square difference (NRMSD; compares PM2.5 measurements from paired instruments of the same type) was ~ 5% (DustTrak II), ~ 27% (DRX), and ~ 15% (BAM). The normalized root mean square error (NRMSE; compares PM2.5 measurements from optical instruments against a reference instrument) was ~ 165% for DustTrak II, ~ 74% after applying literature-based humidity correction and ~ 27% after applying both the humidity and BAM corrections. Although optical instruments are highly precise in their PM2.5 measurements, they tend to be strongly biased relative to reference-grade devices. We also explored two different methods to compensate for relative humidity bias and found that the results differed by ~ 50% between the two methods. This study highlights the limitations of adopting a literature-derived calibration equation and the need for conducting local model-specific calibration. Moreover, this is one of the few studies to perform an intra-model comparison of collocated reference-grade devices.

13.
PLoS One ; 17(5): e0268714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613109

RESUMO

Each year, millions of premature deaths worldwide are caused by exposure to outdoor air pollution, especially fine particulate matter (PM2.5). Designing policies to reduce these deaths relies on air quality modeling for estimating changes in PM2.5 concentrations from many scenarios at high spatial resolution. However, air quality modeling typically has substantial requirements for computation and expertise, which limits policy design, especially in countries where most PM2.5-related deaths occur. Lower requirement reduced-complexity models exist but are generally unavailable worldwide. Here, we adapt InMAP, a reduced-complexity model originally developed for the United States, to simulate annual-average primary and secondary PM2.5 concentrations across a global-through-urban spatial domain: "Global InMAP". Global InMAP uses a variable resolution grid, with horizontal grid cell widths ranging from 500 km in remote locations to 4km in urban locations. We evaluate Global InMAP performance against both measurements and a state-of-the-science chemical transport model, GEOS-Chem. Against measurements, InMAP predicts total PM2.5 concentrations with a normalized mean error of 62%, compared to 41% for GEOS-Chem. For the emission scenarios considered, Global InMAP reproduced GEOS-Chem pollutant concentrations with a normalized mean bias of 59%-121%, which is sufficient for initial policy assessment and scoping. Global InMAP can be run on a desktop computer; simulations here took 2.6-8.4 hours. This work presents a global, open-source, reduced-complexity air quality model to facilitate policy assessment worldwide, providing a screening tool for reducing air pollution-related deaths where they occur most.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Mortalidade Prematura , Material Particulado/análise , Estados Unidos
14.
Environ Sci Technol Lett ; 9(4): 345-350, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35434171

RESUMO

Communities of color in the United States are systematically exposed to higher levels of air pollution. We explore here how redlining, a discriminatory mortgage appraisal practice from the 1930s by the federal Home Owners' Loan Corporation (HOLC), relates to present-day intraurban air pollution disparities in 202 U.S. cities. In each city, we integrated three sources of data: (1) detailed HOLC security maps of investment risk grades [A ("best"), B, C, and D ("hazardous", i.e., redlined)], (2) year-2010 estimates of NO2 and PM2.5 air pollution levels, and (3) demographic information from the 2010 U.S. census. We find that pollution levels have a consistent and nearly monotonic association with HOLC grade, with especially pronounced (>50%) increments in NO2 levels between the most (grade A) and least (grade D) preferentially graded neighborhoods. On a national basis, intraurban disparities for NO2 and PM2.5 are substantially larger by historical HOLC grade than they are by race and ethnicity. However, within each HOLC grade, racial and ethnic air pollution exposure disparities persist, indicating that redlining was only one of the many racially discriminatory policies that impacted communities. Our findings illustrate how redlining, a nearly 80-year-old racially discriminatory policy, continues to shape systemic environmental exposure disparities in the United States.

15.
Atmos Environ (1994) ; 2772022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35462958

RESUMO

Existing regulatory pollutant monitoring networks rely on a small number of centrally located measurement sites that are purposefully sited away from major emission sources. While informative of general air quality trends regionally, these networks often do not fully capture the local variability of air pollution exposure within a community. Recent technological advancements have reduced the cost of sensors, allowing air quality monitoring campaigns with high spatial resolution. The 100×100 black carbon (BC) monitoring network deployed 100 low-cost BC sensors across the 15 km2 West Oakland, CA community for 100 days in the summer of 2017, producing a nearly continuous site-specific time series of BC concentrations which we aggregated to one-hour averages. Leveraging this dataset, we employed a hierarchical spatio-temporal model to accurately predict local spatio-temporal concentration patterns throughout West Oakland, at locations without monitors (average cross-validated hourly temporal R 2=0.60). Using our model, we identified spatially varying temporal pollution patterns associated with small-scale geographic features and proximity to local sources. In a sub-sampling analysis, we demonstrated that fine scale predictions of nearly comparable accuracy can be obtained with our modeling approach by using ~30% of the 100×100 BC network supplemented by a shorter-term high-density campaign.

16.
Environ Sci Technol ; 56(11): 7163-7173, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483018

RESUMO

The interaction between water vapor and atmospheric aerosol leads to enhancement in aerosol water content, which facilitates haze development, but its concentrations, sources, and impacts remain largely unknown in polluted urban environments. Here, we show that the Indian capital, Delhi, which tops the list of polluted capital cities, also experiences the highest aerosol water yet reported worldwide. This high aerosol water promotes secondary formation of aerosols and worsens air pollution. We report that severe pollution events are commonly associated with high aerosol water which enhances light scattering and reduces visibility by 70%. Strong light scattering also suppresses the boundary layer height on winter mornings in Delhi, inhibiting dispersal of pollutants and further exacerbating morning pollution peaks. We provide evidence that ammonium chloride is the largest contributor to aerosol water in Delhi, making up 40% on average, and we highlight that regulation of chlorine-containing precursors should be considered in mitigation strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cloreto de Amônio , China , Monitoramento Ambiental , Índia , Material Particulado/análise , Estações do Ano
17.
Lancet Planet Health ; 6(2): e139-e146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998505

RESUMO

BACKGROUND: With much of the world's population residing in urban areas, an understanding of air pollution exposures at the city level can inform mitigation approaches. Previous studies of global urban air pollution have not considered trends in air pollutant concentrations nor corresponding attributable mortality burdens. We aimed to estimate trends in fine particulate matter (PM2·5) concentrations and associated mortality for cities globally. METHODS: We use high-resolution annual average PM2·5 concentrations, epidemiologically derived concentration response functions, and country-level baseline disease rates to estimate population-weighted PM2·5 concentrations and attributable cause-specific mortality in 13 160 urban centres between the years 2000 and 2019. FINDINGS: Although regional averages of urban PM2·5 concentrations decreased between the years 2000 and 2019, we found considerable heterogeneity in trends of PM2·5 concentrations between urban areas. Approximately 86% (2·5 billion inhabitants) of urban inhabitants lived in urban areas that exceeded WHO's 2005 guideline annual average PM2·5 (10 µg/m3), resulting in an excess of 1·8 million (95% CI 1·34 million-2·3 million) deaths in 2019. Regional averages of PM2·5-attributable deaths increased in all regions except for Europe and the Americas, driven by changes in population numbers, age structures, and disease rates. In some cities, PM2·5-attributable mortality increased despite decreases in PM2·5 concentrations, resulting from shifting age distributions and rates of non-communicable disease. INTERPRETATION: Our study showed that, between the years 2000 and 2019, most of the world's urban population lived in areas with unhealthy levels of PM2·5, leading to substantial contributions to non-communicable disease burdens. Our results highlight that avoiding the large public health burden from urban PM2·5 will require strategies that reduce exposure through emissions mitigation, as well as strategies that reduce vulnerability to PM2·5 by improving overall public health. FUNDING: NASA, Wellcome Trust.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , População Urbana
18.
Int J Epidemiol ; 50(6): 1875-1885, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34999861

RESUMO

BACKGROUND: US preterm-birth rates are 1.6 times higher for Black mothers than for White mothers. Although traffic-related air pollution (TRAP) may increase the risk of preterm birth, evaluating its effect on preterm birth and disparities has been challenging because TRAP is often measured inaccurately. This study sought to estimate the effect of TRAP exposure, measured at the street level, on the prevalence of preterm birth by race/ethnicity. METHODS: We linked birth-registry data with TRAP measured at the street level for singleton births in sampled communities during 2013-2015 in Oakland and San Jose, California. Using logistic regression and marginal standardization, we estimated the effects of exposure to black carbon, nitrogen dioxide and ultrafine particles on preterm birth after confounder adjustment and stratification by race/ethnicity. RESULTS: There were 8823 singleton births, of which 760 (8.6%) were preterm. Shifting black-carbon exposure from the 10th to the 90th percentile was associated with: 6.8%age point higher risk of preterm birth (95% confidence interval = 0.1 to 13.5) among Black women; 2.1%age point higher risk (95% confidence interval = -1.1 to 5.2) among Latinas; and inconclusive null findings among Asian and White women. For Latinas, there was evidence of a positive association between the other pollutants and risk of preterm birth, although effect sizes were attenuated in models that co-adjusted for other TRAP. CONCLUSIONS: Exposure to TRAP, especially black carbon, may increase the risk of preterm birth for Latina and Black women but not for Asian and White women.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nascimento Prematuro , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , California/epidemiologia , Feminino , Humanos , Recém-Nascido , Gravidez , Resultado da Gravidez/epidemiologia , Nascimento Prematuro/epidemiologia
19.
Environ Sci Technol ; 55(21): 14710-14719, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648281

RESUMO

Exposure to nitrogen dioxide (NO2), black carbon (BC), and ultrafine particles (UFPs) during pregnancy may increase the risk of preeclampsia, but previous studies have not assessed hyperlocalized differences in pollutant levels, which may cause exposure misclassification. We used data from Google Street View cars with mobile air monitors that repeatedly sampled NO2, BC, and UFPs every 30 m in Downtown and West Oakland neighborhoods during 2015-2017. Data were linked to electronic health records of pregnant women in the 2014-2016 Sutter Health population, who resided within 120 m of monitoring data (N = 1095), to identify preeclampsia cases. We used G-computation with log-binomial regression to estimate risk differences (RDs) associated with a hypothetical intervention reducing pollutant levels to the 25th percentile observed in our sample on preeclampsia risk, overall and stratified by race/ethnicity. Prevalence of preeclampsia was 6.8%. Median (interquartile range) levels of NO2, BC, and UFPs were 10.8 ppb (9.0, 13.0), 0.34 µg/m3 (0.27, 0.42), and 29.2 # × 103/cm3 (26.6, 32.6), respectively. Changes in the risk of preeclampsia achievable by limiting each pollutant to the 25th percentile were NO2 RD = -1.5 per 100 women (95% confidence interval (CI): -2.5, -0.5); BC RD = -1.0 (95% CI: -2.2, 0.02); and UFP RD = -0.5 (95% CI: -1.8, 0.7). Estimated effects were the largest for non-Latina Black mothers: NO2 RD = -2.8 (95% CI: -5.2, -0.3) and BC RD = -3.0 (95% CI: -6.4, 0.4).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pré-Eclâmpsia , Poluentes Atmosféricos/análise , Poluição do Ar/análise , California/epidemiologia , Exposição Ambiental , Feminino , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Pré-Eclâmpsia/epidemiologia , Gravidez
20.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493674

RESUMO

Disparity in air pollution exposure arises from variation at multiple spatial scales: along urban-to-rural gradients, between individual cities within a metropolitan region, within individual neighborhoods, and between city blocks. Here, we improve on existing capabilities to systematically compare urban variation at several scales, from hyperlocal (<100 m) to regional (>10 km), and to assess consequences for outdoor air pollution experienced by residents of different races and ethnicities, by creating a set of uniquely extensive and high-resolution observations of spatially variable pollutants: NO, NO2, black carbon (BC), and ultrafine particles (UFP). We conducted full-coverage monitoring of a wide sample of urban and suburban neighborhoods (93 km2 and 450,000 residents) in four counties of the San Francisco Bay Area using Google Street View cars equipped with the Aclima mobile platform. Comparing scales of variation across the sampled population, greater differences arise from localized pollution gradients for BC and NO (pollutants dominated by primary sources) and from regional gradients for UFP and NO2 (pollutants dominated by secondary contributions). Median concentrations of UFP, NO, and NO2 are, for Hispanic and Black populations, 8 to 30% higher than the population average; for White populations, average exposures to these pollutants are 9 to 14% lower than the population average. Systematic racial/ethnic disparities are influenced by regional concentration gradients due to sharp contrasts in demographic composition among cities and urban districts, while within-group extremes arise from local peaks. Our results illustrate how detailed and extensive fine-scale pollution observations can add new insights about differences and disparities in air pollution exposures at the population scale.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Etnicidade/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Aplicativos Móveis/estatística & dados numéricos , Planejamento Social , Reforma Urbana , Cidades , Monitoramento Ambiental/instrumentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA