RESUMO
BACKGROUD: Diabetic neuropathy (DN) is one of the most common complications of diabetes, affecting about half of individuals with the disease. Among the various symptoms of DN, the development of chronic pain stands out and manifests as exacerbated responses to sensorial stimuli. The conventional clinical treatments used for general neuropathy and associated painful symptoms, still brings uncomplete and unsatisfactory pain relief. Patients with neuropathic pain syndromes are heterogeneous. They present with a variety of sensory symptoms and pain qualities which difficult the correct diagnosis of sensory comorbidities and consequently, the appropriate chronic pain management. AIMS: Herein, we aimed to demonstrate the existence of different sensory profiles on diabetic patients by investigating epidemiological and clinical data on the symptomatology of a group of patients with DN. METHODS: This is a longitudinal and observational study, with a sample of 57 volunteers diagnosed with diabetes from outpatient day clinic of Hospital Universitário of the University of São Paulo-Brazil. After being invited and signed the Informed Consent Form (ICF), patients were submitted to clinical evaluation and filled out pain and quality of life questionnaires. They also performed quantitative sensory test (QST) and underwent skin biopsy for correlation with cutaneous neuropathology. RESULTS: Data demonstrate that 70% of the studied sample presented some type of pain, manifesting in a neuropathic or nociceptive way, what has a negative impact on the life of patients with DM. We also demonstrated a positive association between pain and anxiety and depression, in addition to pain catastrophic thoughts. Three distinct profiles were identified in the sample, separated according to the symptoms of pain: (i) subjects without pain; (ii) with mild or moderate pain; (iii) subjects with severe pain. We also identified through skin biopsy that diabetic patients presented advanced sensory impairment, as a consequence of the degeneration of the myelinated and unmyelinated peripheral fibers. This study characterized the painful symptoms and exteroceptive sensation profile in these diabetic patients, associated to a considerable level of sensory degeneration, indicating, and reinforcing the importance of the long-term clinical monitoring of individuals diagnosed with DM, regarding their symptom profiles and exteroceptive sensitivity.
Assuntos
Neuropatias Diabéticas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/diagnóstico , Estudos Longitudinais , Idoso , Medição da Dor/métodos , Adulto , Qualidade de Vida , Fenótipo , Neuralgia/fisiopatologia , Neuralgia/diagnóstico , Neuralgia/etiologiaRESUMO
Globally, malaria and human immunodeficiency virus (HIV) are both independently associated with a massive burden of disease and death. While their co-infection has been well studied for Plasmodium falciparum, scarce data exist regarding the association of P. vivax and HIV. In this cohort study, we assessed the effect of HIV on the risk of vivax malaria infection and recurrence during a 4-year follow-up period in an endemic area of the Brazilian Amazon. For the purpose of this study, we obtained clinical information from January 2012 to December 2016 from two databases. HIV screening data were acquired from the clinical information system at the tropical hospital Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD). The National Malaria Surveillance database (SIVEP malaria) was utilized to identify malaria infections during a 4-year follow-up period after diagnosis of HIV. Both datasets were combined via data linkage. Between 2012 and 2016, a total of 42,121 people were screened for HIV, with 1569 testing positive (3.7%). Out of all the patients diagnosed with HIV, 198 had at least one episode of P. vivax malaria in the follow-up. In the HIV-negative group, 711 participants had at least one P. vivax malaria episode. When comparing both groups, HIV patients had a 6.48 [(5.37-7.83); P < 0.0001] (adjusted relative risk) greater chance of acquiring P. vivax malaria. Moreover, being of the male gender [ARR = 1.41 (1.17-1.71); P < 0.0001], Amerindian ethnicity [ARR = 2.77 (1.46-5.28); P < 0.0001], and a resident in a municipality of the Metropolitan region of Manaus [ARR = 1.48 (1.02-2.15); P = 0.038] were independent risk factors associated with an increased risk of clinical malaria. Education ≥ 8 years [ARR = 0.41 (0.26-0.64); P < 0.0001] and living in the urban area [ARR = 0.44 (0.24-0.80); P = 0.007] were associated to a lower risk of P. vivax malaria. A total of 28 (14.1%) and 180 (25.3%) recurrences (at least a second clinical malaria episode) were reported in the HIV-positive and HIV-negative groups, respectively. After adjusting for sex and education, HIV-positive status was associated with a tendency towards protection from P. vivax malaria recurrences [ARR = 0.55 (0.27-1.10); P = 0.090]. HIV status was not associated with hospitalizations due to P. vivax malaria. CD4 + counts and viral load were not associated with recurrences of P. vivax malaria. No significant differences were found in the distribution of parasitemia between HIV-negative and HIV-positive P. vivax malaria patients. Our results suggest that HIV-positive status is a risk factor for vivax malaria infection, which represents an additional challenge that should be addressed during elimination efforts.
Assuntos
Infecções por HIV , Soropositividade para HIV , Malária Vivax , Brasil/epidemiologia , Estudos de Coortes , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Malária Vivax/epidemiologia , Masculino , RecidivaRESUMO
Brazil has five climatically distinct regions, with an annual average temperature difference up to 14 ºC between the northern and southern extremes. Environmental variation of this magnitude can lead to new genetic patterns among farmed fish populations. Genetically differentiated populations of tambaqui (Colossoma macropomum Cuvier, 1818), an important freshwater fish for Brazilian continental aquaculture, may be associated with regional adaptation. In this study, we selected tambaquis raised in two thermally distinct regions, belonging to different latitudes, to test this hypothesis. De novo transcriptome analysis was performed to compare the significant differences of genes expressed in the liver of juvenile tambaqui from a northern population (Balbina) and a southeastern population (Brumado). In total, 2,410 genes were differentially expressed (1,196 in Balbina and 1,214 in Brumado). Many of the genes are involved in a multitude of biological functions such as biosynthetic processes, homeostasis, biorhythm, immunity, cell signaling, ribosome biogenesis, modification of proteins, intracellular transport, structure/cytoskeleton, and catalytic activity. Enrichment analysis based on biological networks showed a different protein interaction profile for each population, whose encoding genes may play potential functions in local thermal adaptation of fish to their respective farming environments.
RESUMO
Tambaqui (Colossoma macropomum Cuvier, 1818) is an endemic fish of the Amazon and Orinoco basins, and it is the most economically important native species in Brazil being raised in five climatically distinct regions. In the face of current global warming, environmental variations in farm ponds represent additional challenges that may drive new adaptive regional genetic variations among broodstocks of tambaqui. In an experimental context based on the high-emission scenario of the 5th Intergovernmental Panel on Climate Change (IPCC) report, we used two farmed tambaqui populations to test this hypothesis. RNA-seq transcriptome analysis was performed in the liver of juvenile tambaqui from northern (Balbina Experimental Station, Balbina, AM) and southeastern (Brumado Fish Farming, Mogi Mirim, SP) Brazilian regions kept for 30 days in artificial environmental rooms mimicking the current and extreme climate scenarios. Three Illumina MiSeq runs produced close to 120 million 500 bp paired-end reads; 191,139 contigs were assembled with N50 = 1595. 355 genes were differentially expressed for both populations in response to the extreme scenario. After enrichment analysis, each population presented a core set of genes to cope with climate change. Northern fish induced genes related to the cellular response to stress, activation of MAPK activity, response to unfolded protein, protein metabolism and cellular response to DNA damage stimuli. Genes biologically involved in regulating cell proliferation, protein stabilisation and protein ubiquitination for degradation through the ubiquitin-proteasome system were downregulated. Genes associated with biological processes, including the cellular response to stress, MAPK cascade activation, homeostatic processes and positive regulation of immune responses were upregulated in southeastern fish. The downregulated genes were related to cytoskeleton organisation, energy metabolism, and the regulation of transcription and biological rhythms. Our findings reveal the signatures of promising candidate genes involved in the regional plasticity of each population of tambaqui in dealing with upcoming climate changes.