Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(7): 2515-2527, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870574

RESUMO

In the field of drug discovery, there is a substantial challenge in seeking out chemical structures that possess desirable pharmacological, toxicological, and pharmacokinetic properties. Complications arise when drugs interfere with the functioning of cardiac ion channels, leading to serious cardiovascular consequences. The discontinuation and removal of numerous approved drugs from the market or at late development stages in the pipeline due to such inhibitory effects further highlight the urgency of addressing this issue. Consequently, the early prediction of potential blockers targeting cardiac ion channels during the drug discovery process is of paramount importance. This study introduces a deep learning framework that computationally determines the cardiotoxicity associated with the voltage-gated potassium channel (hERG), the voltage-gated calcium channel (Cav1.2), and the voltage-gated sodium channel (Nav1.5) for drug candidates. The predictive capabilities of three feature representations─molecular fingerprints, descriptors, and graph-based numerical representations─are rigorously benchmarked. Additionally, a novel training and evaluation data set framework is presented, enabling predictive model training of drug off-target cardiotoxicity using a comprehensive and large curated data set covering these three cardiac ion channels. To facilitate these predictions, a robust and comprehensive small molecule cardiotoxicity prediction tool named CToxPred has been developed. It is made available as open source under the permissive MIT license at https://github.com/issararab/CToxPred.


Assuntos
Cardiotoxicidade , Canais de Potássio Éter-A-Go-Go , Humanos , Benchmarking , Canais Iônicos , Descoberta de Drogas , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química
2.
J Proteome Res ; 22(2): 585-593, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36688569

RESUMO

A key analysis task in mass spectrometry proteomics is matching the acquired tandem mass spectra to their originating peptides by sequence database searching or spectral library searching. Machine learning is an increasingly popular postprocessing approach to maximize the number of confident spectrum identifications that can be obtained at a given false discovery rate threshold. Here, we have integrated semisupervised machine learning in the ANN-SoLo tool, an efficient spectral library search engine that is optimized for open modification searching to identify peptides with any type of post-translational modification. We show that machine learning rescoring boosts the number of spectra that can be identified for both standard searching and open searching, and we provide insights into relevant spectrum characteristics harnessed by the machine learning model. The semisupervised machine learning functionality has now been fully integrated into ANN-SoLo, which is available as open source under the permissive Apache 2.0 license on GitHub at https://github.com/bittremieux/ANN-SoLo.


Assuntos
Peptídeos , Software , Bases de Dados de Proteínas , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Aprendizado de Máquina , Algoritmos , Biblioteca de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA