Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Res Sq ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798599

RESUMO

Both overt and indolent inflammatory insults in heart transplantation can accelerate pathologic cardiac remodeling, but there are few tools for monitoring the speed and severity of remodeling over time. To address this need, we developed an automated computational pathology system to measure pathologic remodeling in transplant biopsy samples in a large, retrospective cohort of n=2167 digitized heart transplant biopsy slides. Biopsy images were analyzed to identify the pathologic stromal changes associated with future allograft loss or advanced allograft vasculopathy. Biopsy images were then analyzed to assess which historical allo-inflammatory events drive progression of these pathologic stromal changes over time in serial biopsy samples. The top-5 features of pathologic stromal remodeling most strongly associated with adverse outcomes were also strongly associated with histories of both overt and indolent inflammatory events. Our findings identify previously unappreciated subgroups of higher- and lower-risk transplant patients, and highlight the translational potential of digital pathology analysis.

3.
Circ Heart Fail ; 17(2): e010950, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348670

RESUMO

BACKGROUND: Cardiac allograft rejection is the leading cause of early graft failure and is a major focus of postheart transplant patient care. While histological grading of endomyocardial biopsy samples remains the diagnostic standard for acute rejection, this standard has limited diagnostic accuracy. Discordance between biopsy rejection grade and patient clinical trajectory frequently leads to both overtreatment of indolent processes and delayed treatment of aggressive ones, spurring the need to investigate the adequacy of the current histological criteria for assessing clinically important rejection outcomes. METHODS: N=2900 endomyocardial biopsy images were assigned a rejection grade label (high versus low grade) and a clinical trajectory label (evident versus silent rejection). Using an image analysis approach, n=370 quantitative morphology features describing the lymphocytes and stroma were extracted from each slide. Two models were constructed to compare the subset of features associated with rejection grades versus those associated with clinical trajectories. A proof-of-principle machine learning pipeline-the cardiac allograft rejection evaluator-was then developed to test the feasibility of identifying the clinical severity of a rejection event. RESULTS: The histopathologic findings associated with conventional rejection grades differ substantially from those associated with clinically evident allograft injury. Quantitative assessment of a small set of well-defined morphological features can be leveraged to more accurately reflect the severity of rejection compared with that achieved by the International Society of Heart and Lung Transplantation grades. CONCLUSIONS: Conventional endomyocardial samples contain morphological information that enables accurate identification of clinically evident rejection events, and this information is incompletely captured by the current, guideline-endorsed, rejection grading criteria.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Humanos , Miocárdio/patologia , Transplante de Coração/efeitos adversos , Insuficiência Cardíaca/patologia , Coração , Aloenxertos , Rejeição de Enxerto/diagnóstico , Biópsia
4.
Cytometry A ; 103(11): 857-867, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565838

RESUMO

Acute leukemia is usually diagnosed when a test of peripheral blood shows at least 20% of abnormal immature cells (blasts), a figure even lower in case of recurrent cytogenetic abnormalities. Blast identification is crucial for white blood cell (WBC) counting, which depends on both identifying the cell type and characterizing the cellular morphology, processes susceptible of inter- and intraobserver variability. The present work introduces an image combined-descriptor to detect blasts and determine their probable lineage. This strategy uses an intra-nucleus mosaic pattern (InMop) descriptor that captures subtle nuclei differences within WBCs, and Haralick's statistics which quantify the local structure of both nucleus and cytoplasm. The InMop captures WBC inner-nucleus structure by applying a multiscale Shearlet decomposition over a repetitive pattern (mosaic) of automatically-segmented nuclei. As a complement, Haralick's statistics characterize the local structure of the whole cell from an intensity co-occurrence matrix representation. Both InMoP and Haralick-based descriptors are calculated using the b-channel from Lab color-space. The combined-descriptor is assessed by differentiating blasts from nonleukemic cells with support vector machine (SVM) classifiers and different transformation kernels, in two public and independent databases. The first database-D1 (n = 260) is composed of healthy and acute lymphoid leukemia (ALL) single cell images, and second database-D2 contains acute myeloid leukemia (AML) blasts (n = 3294) and nonblast (n = 15,071) cell images. In a first experiment, blasts versus nonblast differentiation is performed by training with a subset of D2 (n = 6588) and testing in D1 (n = 260), obtaining a training AUC of 0.991 ± 0.002 and AUC = 0.782 for the independent validation. A second experiment automatically differentiates AML blasts (260 images from D2) from ALL blasts (260 images from D1), with an AUC of 0.93. In a third experiment, state-of-the-art strategies, VGG16 and RESNEXT convolutional neural networks (CNN), separate blast from nonblast cells in both databases. The VGG16 showed an AUC of 0.673 and the RESNEXT of 0.75. Reported metrics for all the experiments are area under the ROC curve (AUC), accuracy and F1-score.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucócitos , Contagem de Leucócitos , Citoplasma
5.
JCO Clin Cancer Inform ; 6: e2100156, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35522898

RESUMO

PURPOSE: Allogenic hematopoietic stem-cell transplant (HCT) is a curative therapy for acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Relapse post-HCT is the most common cause of treatment failure and is associated with a poor prognosis. Pathologist-based visual assessment of aspirate images and the manual myeloblast counting have shown to be predictive of relapse post-HCT. However, this approach is time-intensive and subjective. The premise of this study was to explore whether computer-extracted morphology and texture features from myeloblasts' chromatin patterns could help predict relapse and prognosticate relapse-free survival (RFS) after HCT. MATERIALS AND METHODS: In this study, Wright-Giemsa-stained post-HCT aspirate images were collected from 92 patients with AML/MDS who were randomly assigned into a training set (St = 52) and a validation set (Sv = 40). First, a deep learning-based model was developed to segment myeloblasts. A total of 214 texture and shape descriptors were then extracted from the segmented myeloblasts on aspirate slide images. A risk score on the basis of texture features of myeloblast chromatin patterns was generated by using the least absolute shrinkage and selection operator with a Cox regression model. RESULTS: The risk score was associated with RFS in St (hazard ratio = 2.38; 95% CI, 1.4 to 3.95; P = .0008) and Sv (hazard ratio = 1.57; 95% CI, 1.01 to 2.45; P = .044). We also demonstrate that this resulting signature was predictive of AML relapse with an area under the receiver operating characteristic curve of 0.71 within Sv. All the relevant code is available at GitHub. CONCLUSION: The texture features extracted from chromatin patterns of myeloblasts can predict post-HCT relapse and prognosticate RFS of patients with AML/MDS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Cromatina , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Aprendizado de Máquina , Síndromes Mielodisplásicas/terapia , Recidiva
6.
Eur Heart J ; 42(24): 2356-2369, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33982079

RESUMO

AIM: Allograft rejection is a serious concern in heart transplant medicine. Though endomyocardial biopsy with histological grading is the diagnostic standard for rejection, poor inter-pathologist agreement creates significant clinical uncertainty. The aim of this investigation is to demonstrate that cellular rejection grades generated via computational histological analysis are on-par with those provided by expert pathologists. METHODS AND RESULTS: The study cohort consisted of 2472 endomyocardial biopsy slides originating from three major US transplant centres. The 'Computer-Assisted Cardiac Histologic Evaluation (CACHE)-Grader' pipeline was trained using an interpretable, biologically inspired, 'hand-crafted' feature extraction approach. From a menu of 154 quantitative histological features relating the density and orientation of lymphocytes, myocytes, and stroma, a model was developed to reproduce the 4-grade clinical standard for cellular rejection diagnosis. CACHE-grader interpretations were compared with independent pathologists and the 'grade of record', testing for non-inferiority (δ = 6%). Study pathologists achieved a 60.7% agreement [95% confidence interval (CI): 55.2-66.0%] with the grade of record, and pair-wise agreement among all human graders was 61.5% (95% CI: 57.0-65.8%). The CACHE-Grader met the threshold for non-inferiority, achieving a 65.9% agreement (95% CI: 63.4-68.3%) with the grade of record and a 62.6% agreement (95% CI: 60.3-64.8%) with all human graders. The CACHE-Grader demonstrated nearly identical performance in internal and external validation sets (66.1% vs. 65.8%), resilience to inter-centre variations in tissue processing/digitization, and superior sensitivity for high-grade rejection (74.4% vs. 39.5%, P < 0.001). CONCLUSION: These results show that the CACHE-grader pipeline, derived using intuitive morphological features, can provide expert-quality rejection grading, performing within the range of inter-grader variability seen among human pathologists.


Assuntos
Tomada de Decisão Clínica , Transplante de Coração , Aloenxertos , Biópsia , Rejeição de Enxerto , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA