Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Arch Dermatol Res ; 315(3): 491-503, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36114867

RESUMO

Coffea canephora plant stem cells can have bioactive compounds with tissue repairing and anti-inflammatory action. This study aimed to develop a liposomal stem cell extract formulation obtained from the leaves of C. canephora (LSCECC) and to investigate its capacity to contribute to the dynamic mechanisms of tissue repair. The liposome cream was developed and characterized through the dynamic light scattering technique, atomic force microscopy, and transmission electron microscopy. The excisional full-thickness skin wound model was used and daily topically treated with the LSCECC formulation or vehicle control. On days 2, 7, 14, and 21 after wounding, five rats from each group were euthanized and the rates of wound closure and re-epithelialization were evaluated using biochemical and histological tests. LSCECC resulted in faster re-epithelialization exhibiting a significant reduction in wound area of 36.4, 42.4, and 87.5% after 7, 10, and 14 days, respectively, when compared to vehicle control. LSCECC treated wounds exhibited an increase in granular tissue and a proper inflammatory response mediated by the reduction of pro-inflammatory cytokines like TNF-α and IL-6 and an increase of IL-10. Furthermore, wounds treated with LSCECC showed an increase in the deposition and organization of collagen fibers at the wound site and improved scar tissue quality due to the increase in transforming growth factor-beta and vascular endothelial growth factor. Our data showed that LSCECC improves wound healing, the formation of extracellular matrix, modulates inflammatory response, and promotes neovascularization being consider a promising bioactive extract to promote and support healthy skin. The graphical presents the action of LSCECC in all four phases of wound healing and tissue repair. The LSCECC can reduce the inflammatory infiltrate in the inflammatory phase by decreasing the pro-inflammatory cytokines like IL-6 and TNF-α, in addition to maintaining this modulation through lesser activation and recruitment of macrophages. The LSCECC can also increase the release of IL-10, an anti-inflammatory cytokine, decreasing local edema. The increase in VEGF provides neovascularization and the supply of nutrients to newly repaired tissue. Finally, signaling via TGF-ß increases the production and organization of collagen fibers in the remodeling phase.


Assuntos
Coffea , Interleucina-10 , Ratos , Animais , Interleucina-10/metabolismo , Coffea/metabolismo , Extratos Celulares , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular , Lipossomos/metabolismo , Cicatrização/fisiologia , Pele/patologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Colágeno/metabolismo
3.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140529, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853775

RESUMO

The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.


Assuntos
Cedrela/fisiologia , Cedrela/efeitos da radiação , Luz , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Poliaminas/metabolismo , Proteoma/efeitos da radiação , Cedrela/crescimento & desenvolvimento , Germinação , Espectrometria de Massas , Desenvolvimento Vegetal/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA