Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell Rep ; 43(4): 114103, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607920

RESUMO

Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.


Assuntos
Proliferação de Células , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , NAD , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos
2.
Cell Rep ; 42(12): 113508, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38019650

RESUMO

Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.


Assuntos
Colite , Interleucinas , Camundongos , Animais , Interleucinas/genética , Interleucinas/metabolismo , Imunidade Inata , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos/metabolismo , Interleucina-18 , Inflamação , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
3.
iScience ; 26(1): 105739, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582828

RESUMO

Inhibition of the heterodimeric amino acid carrier SLC7A5/SLC3A2 (LAT1/CD98) has been widely studied in tumor biology but its role in physiological conditions remains largely unknown. Here we show that the SLC7A5/SLC3A2 heterodimer is constitutively present at different stages of erythroid differentiation but absent in mature erythrocytes. Administration of erythropoietin (EPO) further induces SLC7A5/SLC3A2 expression in circulating reticulocytes, as it also occurs in anemic conditions. Although Slc7a5 gene inactivation in the erythrocyte lineage does not compromise the total number of circulating red blood cells (RBCs), their size and hemoglobin content are significantly reduced accompanied by a diminished erythroblast mTORC1 activity. Furthermore circulating Slc7a5-deficient reticulocytes are characterized by lower transferrin receptor (CD71) expression as well as mitochondrial activity, suggesting a premature transition to mature RBCs. These data reveal that SLC7A5/SLC3A2 ensures adequate maturation of reticulocytes as well as the proper size and hemoglobin content of circulating RBCs.

4.
J Cereb Blood Flow Metab ; 43(1): 44-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929074

RESUMO

A central response to insufficient cerebral oxygen delivery is a profound reprograming of metabolism, which is mainly regulated by the Hypoxia Inducible Factor (HIF). Among other responses, HIF induces the expression of the atypical mitochondrial subunit NDUFA4L2. Surprisingly, NDUFA4L2 is constitutively expressed in the brain in non-hypoxic conditions. Analysis of publicly available single cell transcriptomic (scRNA-seq) data sets coupled with high-resolution multiplexed fluorescence RNA in situ hybridization (RNA F.I.S.H.) revealed that in the murine and human brain NDUFA4L2 is exclusively expressed in mural cells with the highest levels found in pericytes and declining along the arteriole-arterial smooth muscle cell axis. This pattern was mirrored by COX4I2, another atypical mitochondrial subunit. High NDUFA4L2 expression was also observed in human brain pericytes in vitro, decreasing when pericytes are muscularized and further induced by HIF stabilization in a PHD2/PHD3 dependent manner. In vivo, Vhl conditional inactivation in pericyte targeting Ng2-cre transgenic mice dramatically induced NDUFA4L2 expression. Finally NDUFA4L2 inactivation in pericytes increased oxygen consumption and therefore the degree of HIF pathway induction in hypoxia. In conclusion our work reveals that NDUFA4L2 together with COX4I2 is a key hypoxic-induced metabolic marker constitutively expressed in pericytes coupling mitochondrial oxygen consumption and cellular hypoxia response.


Assuntos
Hipóxia , RNA , Animais , Humanos , Camundongos , Hipóxia/genética
5.
Biomed Pharmacother ; 156: 113972, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411648

RESUMO

OBJECTIVE: To investigate the potential role of EGFR, ErbBs receptors and neuregulins in human adipose tissue physiology in obesity. METHODS: Gene expression analysis in human subcutaneous (SAT) and visceral (VAT) adipose tissue in three independent cohorts [two cross-sectional (N = 150, N = 87) and one longitudinal (n = 25)], and in vitro gene knockdown and overexpression experiments were performed. RESULTS: While both SAT and VAT ERBB2 and ERBB4 mRNA increased in obesity, SAT EGFR mRNA was negatively correlated with insulin resistance, but did not change in obesity. Of note, both SAT and VAT EGFR mRNA were significantly associated with adipogenesis and increased during human adipocyte differentiation. In vitro experiments revealed that EGFR, but not ERBB2 and ERBB4, gene knockdown in preadipocytes and in fully differentiated human adipocytes resulted in decreased expression of adipogenic-related genes. ERBB2 gene knockdown also reduced gene expression of fatty acid synthase in fully differentiated adipocytes. In addition, neuregulin 2 (NRG2) mRNA was associated with expression of adipogenic genes in human adipose tissue and adipocytes, and its overexpression increased expression of EGFR and relevant adipogenic genes. CONCLUSIONS: This study demonstrates the association between adipose tissue ERBB2 and obesity, confirms the relevance of EGFR on human adipogenesis, and suggests a possible adipogenic role of NRG2.


Assuntos
Adipócitos , Receptores ErbB , Neurregulinas , Obesidade , Receptor ErbB-2 , Receptor ErbB-4 , Humanos , Tecido Adiposo , Estudos Transversais , Receptores ErbB/metabolismo , Neurregulinas/metabolismo , Obesidade/metabolismo , RNA Mensageiro , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo
6.
Front Physiol ; 13: 950791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187779

RESUMO

Neuregulin 4 (NRG4) has been described to improve metabolic disturbances linked to obesity status in rodent models. The findings in humans are controversial. We aimed to investigate circulating NRG4 in association with insulin action in humans and the possible mechanisms involved. Insulin sensitivity (euglycemic hyperinsulinemic clamp) and serum NRG4 concentration (ELISA) were analysed in subjects with a wide range of adiposity (n = 89). In vitro experiments with human HepG2 cell line were also performed. Serum NRG4 was negatively correlated with insulin sensitivity (r = -0.25, p = 0.02) and positively with the inflammatory marker high-sensitivity C reative protein (hsCRP). In fact, multivariant linear regression analyses showed that insulin sensitivity contributed to BMI-, age-, sex-, and hsCRP-adjusted 7.2% of the variance in serum NRG4 (p = 0.01). No significant associations were found with adiposity measures (BMI, waist circumference or fat mass), plasma lipids (HDL-, LDL-cholesterol, or fasting triglycerides) or markers of liver injury. Cultured hepatocyte HepG2 treated with human recombinant NRG4 had an impact on hepatocyte metabolism, leading to decreased gluconeogenic- and mitochondrial biogenesis-related gene expression, and reduced mitochondrial respiration, without effects on expression of lipid metabolism-related genes. Similar but more pronounced effects were found after neuregulin 1 administration. In conclusion, sustained higher serum levels of neuregulin-4, observed in insulin resistant patients may have deleterious effects on metabolic and mitochondrial function in hepatocytes. However, findings from in vitro experiments should be confirmed in human primary hepatocytes.

7.
Front Oncol ; 12: 976961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052260

RESUMO

Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.

8.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884763

RESUMO

The adipokine Neuregulin 4 (Nrg4) protects against obesity-induced insulin resistance. Here, we analyze how the downregulation of Nrg4 influences insulin action and the underlying mechanisms in adipocytes. Validated shRNA lentiviral vectors were used to generate scramble (Scr) and Nrg4 knockdown (KD) 3T3-L1 adipocytes. Adipogenesis was unaffected in Nrg4 KD adipocytes, but there was a complete impairment of the insulin-induced 2-deoxyglucose uptake, which was likely the result of reduced insulin receptor and Glut4 protein. Downregulation of Nrg4 enhanced the expression of proinflammatory cytokines. Anti-inflammatory agents recovered the insulin receptor, but not Glut4, content. Proteins enriched in Glut4 storage vesicles such as the insulin-responsive aminopeptidase (IRAP) and Syntaxin-6 as well as TBC1D4, a protein involved in the intracellular retention of Glut4 vesicles, also decreased by Nrg4 KD. Insulin failed to reduce autophagy in Nrg4 KD adipocytes, observed by a minor effect on mTOR phosphorylation, at the time that proteins involved in autophagy such as LC3-II, Rab11, and Clathrin were markedly upregulated. The lysosomal activity inhibitor bafilomycin A1 restored Glut4, IRAP, Syntaxin-6, and TBC1D4 content to those found in control adipocytes. Our study reveals that Nrg4 preserves the insulin responsiveness by preventing inflammation and, in turn, benefits the insulin regulation of autophagy.


Assuntos
Autofagia/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/fisiologia , Neurregulinas/metabolismo , Receptor de Insulina/biossíntese , Células 3T3 , Adipócitos/metabolismo , Animais , Linhagem Celular , Cistinil Aminopeptidase/biossíntese , Citocinas/biossíntese , Desoxiglucose/metabolismo , Regulação para Baixo , Proteínas Ativadoras de GTPase/biossíntese , Inflamação/patologia , Insulina/metabolismo , Camundongos , Neurregulinas/biossíntese , Neurregulinas/genética , Proteínas Qa-SNARE/biossíntese , Interferência de RNA , RNA Interferente Pequeno/genética
9.
Redox Biol ; 48: 102171, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34736121

RESUMO

Therapeutic potential of metformin in obese/diabetic patients has been associated to its ability to combat insulin resistance. However, it remains largely unknown the signaling pathways involved and whether some cell types are particularly relevant for its beneficial effects. M1-activation of macrophages by bacterial lipopolysaccharide (LPS) promotes a paracrine activation of hypoxia-inducible factor-1α (HIF1α) in brown adipocytes which reduces insulin signaling and glucose uptake, as well as ß-adrenergic sensitivity. Addition of metformin to M1-polarized macrophages blunted these signs of brown adipocyte dysfunction. At the molecular level, metformin inhibits an inflammatory program executed by HIF1α in macrophages by inducing its degradation through the inhibition of mitochondrial complex I activity, thereby reducing oxygen consumption in a reactive oxygen species (ROS)-independent manner. In obese mice, metformin reduced inflammatory features in brown adipose tissue (BAT) such as macrophage infiltration, proinflammatory signaling and gene expression, and restored the response to cold exposure. In conclusion, the impact of metformin on macrophages by suppressing a HIF1α-dependent proinflammatory program is likely responsible for a secondary beneficial effect on insulin-mediated glucose uptake and ß-adrenergic responses in brown adipocytes.

10.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321829

RESUMO

Cellular response to hypoxia is controlled by the hypoxia-inducible transcription factors HIF1α and HIF2α. Some genes are preferentially induced by HIF1α or HIF2α, as has been explored in some cell models and for particular sets of genes. Here we have extended this analysis to other HIF-dependent genes using in vitro WT8 renal carcinoma cells and in vivo conditional Vhl-deficient mice models. Moreover, we generated chimeric HIF1/2 transcription factors to study the contribution of the HIF1α and HIF2α DNA binding/heterodimerization and transactivation domains to HIF target specificity. We show that the induction of HIF1α-dependent genes in WT8 cells, such as CAIX (CAR9) and BNIP3, requires both halves of HIF, whereas the HIF2α transactivation domain is more relevant for the induction of HIF2 target genes like the amino acid carrier SLC7A5. The HIF selectivity for some genes in WT8 cells is conserved in Vhl-deficient lung and liver tissue, whereas other genes like Glut1 (Slc2a1) behave distinctly in these tissues. Therefore the relative contribution of the DNA binding/heterodimerization and transactivation domains for HIF target selectivity can be different when comparing HIF1α or HIF2α isoforms, and that HIF target gene specificity is conserved in human and mouse cells for some of the genes analyzed.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sítios de Ligação , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Ativação Transcricional
11.
Cancers (Basel) ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066332

RESUMO

Cancer cells develop mechanisms that increase nutrient uptake, including key nutrient carriers, such as amino acid transporter 1 (LAT-1) and glucose transporter 1 (GLUT-1), regulated by the oxygen-sensing Von Hippel Lindau-hypoxia-inducible factor (VHL-HIF) transcriptional pathway. We aimed to analyze these metabolic players in gastroenteropancreatic neuroendocrine tumors (GEP-NET) and correlate them with tumor malignancy and progression. LAT-1, GLUT-1, and pVHL expression was analyzed in 116 GEP-NETs and 48 peritumoral tissue samples by immunohistochemistry. LAT-1 was stably silenced using specific shRNA in the human NET BON cell line. LAT-1 expression was significantly increased in tumor tissue compared to non-tumor tissue in both gastrointestinal (67% vs. 44%) and pancreatic NETs (54% vs. 31%). Similarly, GLUT-1 was substantially elevated in gastrointestinal (74% vs. 19%) and pancreatic (58% vs. 4%) NETs. In contrast, pVHL expression was decreased (85% vs. 58%) in pancreatic NETs. Tumors with metastases at diagnosis displayed increased LAT-1 and GLUT-1 and decreased pVHL expression (p < 0.001). In accordance with these data, silencing LAT-1 curtailed cell proliferation in BON cells. These findings suggest that specific mechanisms that increase nutrient uptake, such as LAT-1 and GLUT-1, are increased in GEP-NETs, whereas pVHL is decreased. These markers might be related to the proliferation and metastatic capacity of these tumors.

12.
Liver Int ; 40(10): 2553-2567, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432822

RESUMO

BACKGROUND & AIMS: Molecular mechanisms by which hypoxia might contribute to hepatosteatosis, the earliest stage in non-alcoholic fatty liver disease (NAFLD) pathogenesis, remain still to be elucidated. We aimed to assess the impact of hypoxia-inducible factor 2α (HIF2α) on the fatty acid translocase CD36 expression and function in vivo and in vitro. METHODS: CD36 expression and intracellular lipid content were determined in hypoxic hepatocytes, and in hypoxic CD36- or HIF2α -silenced human liver cells. Histological analysis, and HIF2α and CD36 expression were evaluated in livers from animals in which von Hippel-Lindau (Vhl) gene is inactivated (Vhlf/f -deficient mice), or both Vhl and Hif2a are simultaneously inactivated (Vhlf/f Hif2α/f -deficient mice), and from 33 biopsy-proven NAFLD patients and 18 subjects with histologically normal liver. RESULTS: In hypoxic hepatocytes, CD36 expression and intracellular lipid content were augmented. Noteworthy, CD36 knockdown significantly reduced lipid accumulation, and HIF2A gene silencing markedly reverted both hypoxia-induced events in hypoxic liver cells. Moreover livers from Vhlf/f -deficient mice showed histologic characteristics of non-alcoholic steatohepatitis (NASH) and increased CD36 mRNA and protein amounts, whereas both significantly decreased and NASH features markedly ameliorated in Vhlf/f Hif2αf/f -deficient mice. In addition, both HIF2α and CD36 were significantly overexpressed within the liver of NAFLD patients and, interestingly, a significant positive correlation between hepatic transcript levels of CD36 and erythropoietin (EPO), a HIF2α -dependent gene target, was observed in NAFLD patients. CONCLUSIONS: This study provides evidence that HIF2α drives lipid accumulation in human hepatocytes by upregulating CD36 expression and function, and could contribute to hepatosteatosis setup.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Antígenos CD36/genética , Ácidos Graxos , Humanos , Hipóxia , Fígado , Camundongos
13.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118733, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32416106

RESUMO

Cell responses to reduced oxygen supply (hypoxia) are largely mediated by hypoxia-inducible transcription factors (HIFs). The pathophysiological role of the HIF pathway is driven by its ability to potentiate key biological processes as part of the adaptation to hypoxia, such as erythropoiesis and angiogenesis. Moreover, the role of HIF signaling in the reprogramming of cell metabolism is also critical to understand the role of these transcription factors in health and disease. In this regard, HIFs reprogram oxidative metabolism of glucose and fatty acids, offering a molecular mechanism by which the HIF pathway can help cells become more tolerant of redox stress during hypoxic/ischemic episodes. However, the way in which HIFs influence amino acid metabolism and its pathophysiology consequences have been less well explored. Here we review recent studies about the role of the HIF1α and HIF2α isoforms in amino acid metabolism, which provides insight to better understand how these factors can influence cell autonomous proliferation and cellular tolerance to hypoxia.


Assuntos
Aminoácidos/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Transdução de Sinais , Animais , Proliferação de Células , Ciclo do Ácido Cítrico , Colágeno/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Oxirredução , Estresse Oxidativo
14.
J Allergy Clin Immunol ; 145(1): 199-214.e11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605740

RESUMO

BACKGROUND: Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1ß, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE: We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS: LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS: LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1ß, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1ß stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1ß-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION: Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1ß/IL-17 axis.


Assuntos
Imunidade Adaptativa , Sistema y+L de Transporte de Aminoácidos/imunologia , Imunidade Inata , Transportador 1 de Aminoácidos Neutros Grandes/imunologia , Psoríase/imunologia , Pele/imunologia , Células Th17/imunologia , Sistema y+L de Transporte de Aminoácidos/genética , Animais , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos , Camundongos Transgênicos , Psoríase/genética , Psoríase/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/patologia , Células Th17/patologia
15.
Sci Signal ; 13(615)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31848220

RESUMO

Acute cardiorespiratory responses to O2 deficiency are essential for physiological homeostasis. The prototypical acute O2-sensing organ is the carotid body, which contains glomus cells expressing K+ channels whose inhibition by hypoxia leads to transmitter release and activation of nerve fibers terminating in the brainstem respiratory center. The mechanism by which changes in O2 tension modulate ion channels has remained elusive. Glomus cells express genes encoding HIF2α (Epas1) and atypical mitochondrial subunits at high levels, and mitochondrial NADH and reactive oxygen species (ROS) accumulation during hypoxia provides the signal that regulates ion channels. We report that inactivation of Epas1 in adult mice resulted in selective abolition of glomus cell responsiveness to acute hypoxia and the hypoxic ventilatory response. Epas1 deficiency led to the decreased expression of atypical mitochondrial subunits in the carotid body, and genetic deletion of Cox4i2 mimicked the defective hypoxic responses of Epas1-null mice. These findings provide a mechanistic explanation for the acute O2 regulation of breathing, reveal an unanticipated role of HIF2α, and link acute and chronic adaptive responses to hypoxia.


Assuntos
Artérias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Quimiorreceptoras/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Animais , Artérias/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Corpo Carotídeo/citologia , Corpo Carotídeo/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Hipóxia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistema Respiratório/metabolismo , Transdução de Sinais
16.
Front Physiol ; 10: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766490

RESUMO

Background: Nrg4 expression has been linked to brown adipose tissue activity and browning of white adipocytes in mice. Here, we aimed to investigate whether these observations could be translated to humans by investigating NRG4 mRNA and markers of brown/beige adipocytes in human visceral (VAT) and subcutaneous adipose tissue (SAT). We also studied the possible association of NRG4 with insulin action. Methods: SAT and VAT NRG4 and markers of brown/beige (UCP1, UCP3, and TMEM26)-related gene expression were analyzed in two independent cohorts (n = 331 and n = 59). Insulin resistance/sensitivity was measured using HOMAIR and glucose infusion rate during euglycemic hyperinsulinemic clamp. Results: In both cohort 1 and cohort 2, NRG4 and thermogenic/beige-related gene expression were significantly increased in VAT compared to SAT. Adipogenic-related genes followed an opposite pattern. In cohort 1, VAT NRG4 gene expression was positively correlated with BMI and expression of UCP1, UCP3, TMEM26, and negatively with adipogenic (FASN, PPARG, and SLC2A4)- and inflammatory (IL6 and IL8)-related genes. In SAT, NRG4 gene expression was negatively correlated with HOMAIR and positively with UCP1 and TMEM26 gene expression. Multiple linear regression analysis revealed that expression of TMEM26 gene was the best predictor of NRG4 gene expression in both VAT and SAT. Specifically, NRG4 and TMEM26 gene expression was significantly increased in VAT, but not in SAT stromal vascular fraction cells (p < 0.001). In cohort 2, the significant association between NRG4 and TMEM26 gene expression in both VAT and SAT was confirmed, and SAT NRG4 gene expression also was positively correlated with insulin action and the expression of UCP1. Conclusion: Current findings suggest NRG4 gene expression as a novel marker of beige adipocytes in human adipose tissue.

17.
Cell Rep ; 26(9): 2257-2265.e4, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811976

RESUMO

Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.


Assuntos
Ácido Aspártico/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspartato Aminotransferase Citoplasmática/metabolismo , Aspartato Aminotransferase Mitocondrial/metabolismo , Ácido Aspártico/farmacologia , Carcinoma de Células Renais/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glutamina/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/enzimologia , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/antagonistas & inibidores , Neoplasias/patologia , Oxirredução , Proteínas Supressoras de Tumor/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
18.
Biomedicines ; 6(2)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882755

RESUMO

Cellular responses to oxygen fluctuations are largely mediated by hypoxia-inducible factors (HIFs). Upon inhalation, the first organ inspired oxygen comes into contact with is the lungs, but the understanding of the pulmonary HIF oxygen-sensing pathway is still limited. In this review we will focus on the role of HIF1α and HIF2α isoforms in lung responses to oxygen insufficiency. In particular, we will discuss novel findings regarding their role in the biology of smooth muscle cells and endothelial cells in the context of hypoxia-induced pulmonary vasoconstriction. Moreover, we will also discuss recent studies into HIF-dependent responses in the airway epithelium, which have been even less studied than the HIF-dependent vascular responses in the lungs. In summary, we will review the biological functions executed by HIF1 or HIF2 in the pulmonary vessels and epithelium to control lung responses to oxygen fluctuations as well as their pathological consequences in the hypoxic lung.

19.
Front Oncol ; 8: 214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29938199

RESUMO

The most common type of the renal cancers detected in humans is clear cell renal cell carcinomas (ccRCCs). These tumors are usually initiated by biallelic gene inactivation of the Von Hippel-Lindau (VHL) factor in the renal epithelium, which deregulates the hypoxia-inducible factors (HIFs) HIF1α and HIF2α, and provokes their constitutive activation irrespective of the cellular oxygen availability. While HIF1α can act as a ccRCC tumor suppressor, HIF2α has emerged as the key HIF isoform that is essential for ccRCC tumor progression. Indeed, preclinical and clinical data have shown that pharmacological inhibitors of HIF2α can efficiently combat ccRCC growth. In this review, we discuss the molecular basis underlying the oncogenic potential of HIF2α in ccRCC by focusing on those pathways primarily controlled by HIF2α that are thought to influence the progression of these tumors.

20.
EMBO J ; 37(9)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29615453

RESUMO

The formation of neurites is an important process affecting the cognitive abilities of an organism. Neurite growth requires the addition of new membranes, but the metabolic remodeling necessary to supply lipids for membrane expansion is poorly understood. Here, we show that synaptic activity, one of the most important inducers of neurite growth, transcriptionally regulates the expression of neuronal glucose transporter Glut3 and rate-limiting enzymes of glycolysis, resulting in enhanced glucose uptake and metabolism that is partly used for lipid synthesis. Mechanistically, CREB regulates the expression of Glut3 and Siah2, the latter and LDH activity promoting the normoxic stabilization of HIF-1α that regulates the expression of rate-limiting genes of glycolysis. The expression of dominant-negative HIF-1α or Glut3 knockdown blocks activity-dependent neurite growth in vitro while pharmacological inhibition of the glycolysis and specific ablation of HIF-1α in early postnatal mice impairs the neurite architecture. These results suggest that the manipulation of neuronal glucose metabolism could be used to treat some brain developmental disorders.


Assuntos
Estruturas da Membrana Celular/metabolismo , Neuritos/metabolismo , Sinapses/metabolismo , Animais , Estruturas da Membrana Celular/genética , Estruturas da Membrana Celular/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 3/biossíntese , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neuritos/patologia , Ratos , Ratos Sprague-Dawley , Sinapses/genética , Sinapses/patologia , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA