Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(3): 653-664, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191621

RESUMO

Visible particles (VPs) formation in liquid monoclonal antibody formulations is a critical quality issue. Formulations that include poloxamer 188 (PX188) as a surfactant are prone to the formation of VPs comprising aggregated complexes of protein and polydimethylsiloxane (PDMS; silicone oil) derived from primary containers. However, the mechanisms through which these VPs form are complicated and remain to be fully elucidated. This study demonstrates for the first time the dominant spot and pathway of protein-PDMS VP formation in a particular liquid vial formulation. Specifically, when a vial sealed with a PDMS-coated stopper is stored in an upright position under conditions whereby the antibody solution has become well-adhered to the stopper and an air phase exists in the vicinity, protein-PDMS aggregates form on the stopper and are then desorbed into the drug solution to be detected as VPs. Here, we evaluated the effects of several factors on VP formation: adhesion of the drug solution to the stopper, storage orientation, silicone coating on the stopper, vial material, and hydrophobicity of PX188. Remarkably, we found that changing any one of the factors could significantly affect VP formation. Our findings are instructive for better understanding the mechanisms of VP formation in vial products and can provide strategies for VP mitigation in biotherapeutics.


Assuntos
Anticorpos Monoclonais , Embalagem de Medicamentos , Óleos de Silicone
2.
J Pharm Sci ; 111(8): 2191-2200, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35461805

RESUMO

Surfactants such as Poloxamer 188 (PX188) play an important role in controlling particle formation in biotherapeutic formulations due to interfacial stresses. This study demonstrates for the first time that hydrophobicity of PX188 is a potential critical material attribute (CMA) as far as control of visible particle (VP) formation is concerned. We have found that within PX188 lots satisfying pharmacopeial specifications, there is variability in material attributes such as hydrophobicity, as determined from their reversed-phase high-performance liquid chromatography profiles. However, it currently remains unknown how such variability in hydrophobicity of PX188 affects surfactant function and VP formation. Here, we compared the effect of seven PX188 lots in two monoclonal antibody drug product formulations under various stress conditions. Notably, proteinaceous VP formation was reduced while using a PX188 lot with higher hydrophobicity. Our findings emphasize the importance of monitoring lot-to-lot variability of PX188 and provide insight into potential CMA for improving and controlling material attributes of PX188 for use in liquid biotherapeutic formulations.


Assuntos
Anticorpos Monoclonais , Poloxâmero , Anticorpos Monoclonais/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Tensoativos/química
3.
Molecules ; 25(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076298

RESUMO

Hydroxyethyl cellulose (HeC) maintains high water solubility over a wide temperature range even in a high temperature region where other nonionic chemically modified cellulose ethers, such as methyl cellulose (MC) and hydroxypropylmethyl cellulose (HpMC), demonstrate cloud points. In order to clarify the reason for the high solubility of HeC, the temperature dependence of the hydration number per glucopyranose unit, nH, for the HeC samples was examined by using extremely high frequency dielectric spectrum measuring techniques up to 50 GHz over a temperature range from 10 to 70 °C. HeC samples with a molar substitution number (MS) per glucopyranose unit by hydroxyethyl groups ranging from 1.3 to 3.6 were examined in this study. All HeC samples dissolve into water over the examined temperature range and did not show their cloud points. The value of nH for the HeC sample possessing the MS of 1.3 was 14 at 20 °C and decreased gently with increasing temperature and declined to 10 at 70 °C. The nH values of the HeC samples are substantially larger than the minimum critical nH value of ca. 5 necessary to be dissolved into water for cellulose ethers such as MC and HpMC, even in a high temperature range. Then, the HeC molecules possess water solubility over the wide temperature range. The temperature dependence of nH for the HeC samples and triethyleneglycol, which is a model compound for substitution groups of HeC, is gentle and they are similar to each other. This observation strongly suggests that the hydration/dehydration behavior of the HeC samples was essentially controlled by that of their substitution groups.


Assuntos
Celulose/química , Éter/química , Metilcelulose/química , Água/química , Temperatura Alta , Fenômenos Físicos , Polímeros/química , Solubilidade , Soluções/química , Temperatura
4.
RSC Adv ; 10(32): 19059-19066, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35518322

RESUMO

The structure and conformation of methyl cellulose (MC) and hydroxypropyl methyl cellulose (HpMC) ether samples dissolved in dilute aqueous (D2O) solutions at a temperature of 25 °C were reconsidered in detail based on the experimental results obtained using small- and wide-angle neutron scattering (S-WANS) techniques in a range of scattering vectors (q) from 0.05 to 100 nm-1. MC samples exhibited an average degree of substitution (DS) by methyl groups per glucose unit of DS = 1.8 and the weight average molar mass of M w = 37 × 103 and 79 × 103 g mol-1. On the other hand, HpMC samples possessed the average molar substitution number (MS) by hydroxypropyl groups per glucose unit of MS = 0.25, DS = 1.9, and M w = 50 × 103 and 71 × 103 g mol-1. The concentration-reduced scattering intensity data gathered into a curve for the solutions of identical sample species clearly demonstrated the relationship I(q)c -1 ∝ q -1 in a q range from 0.05 to 2.0 nm-1, and small interference peaks were found at q ∼ 7 and 17 nm-1 for all examined sample solutions. These observations strongly revealed that form factors for both the MC and HpMC samples were perfectly described with that for long, rigid rod particles with average diameters of 0.8 and 0.9 nm, respectively, and with an inner structure with characteristic mean spacing distances of ca. 0.9 and 0.37 nm, respectively, regardless of the chemically modified conditions and molar masses. A rationally speculated structure model for the MC and HpMC samples dissolved in aqueous solution was proposed.

5.
Phys Chem Chem Phys ; 21(45): 25379-25388, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31709431

RESUMO

The degree of polymerization and temperature dependencies of the molecular motions, configuration and hydration behaviour of glucose oligomers (Gn, n = 2 to 7, degree of polymerization) in aqueous solutions were investigated using extremely high-frequency dielectric spectrum measuring techniques up to 50 GHz. The obtained dielectric spectra for the aqueous Gn solutions were well decomposed into four Debye-type relaxation modes. The fastest relaxation mode j = 1 was assigned to the rotational process of free water molecules in the sample solution. The second fastest mode j = 2 was attributed to the exchange process of hydrated water molecules with free water molecules, and the third mode j = 3 was recognized as the rotational process of hydroxy groups attached to each repeating glucopyranoside (Glu) unit after their lifetimes of intramolecular hydrogen bonding. The slowest mode j = 4 at a relaxation time depending on n was assigned to the overall rotation of the Gn molecules possessing configurations similar to that of small fragments of single helical V-type crystalline structures at low temperatures. The presence of the dielectric mode j = 4 revealed that the Glu units possessed electric dipole moments carrying a component parallel to the Gn backbone aligned with the C1 → C4 direction. The number of hydrated water molecules per Glu unit (hydration number, nH) was determined for Gns in aqueous solutions in the temperature range from 10 °C to 70 °C via the relaxation strength of mode j = 1. The Gn oligomers were highly soluble in water within the temperature range examined, possessing nH values slightly dependent on n and demonstrated clear dehydration behaviour at approximately 30 °C with increasing temperature. These temperature dependencies of nH were substantially weaker than those of a model Glu unit compound, methyl α-d-glucopyranoside (G1). Then, the polymerization of glucose oligomers effectively depresses the dehydration behaviour of G1.

6.
ACS Omega ; 3(10): 13944-13951, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411054

RESUMO

A cellulose nanocrystal (CNC) sample prepared from chemical pulp via sulfuric acid hydrolysis procedures has been supplied by InnoTech Alberta Inc. in the shape of white dry powder as a prototype product. Some transport coefficients were precisely investigated for the CNC sample in aqueous suspensions at the room temperature of 25 °C such as the average rotational and translational diffusion coefficients (D r and D t) and viscoelastic relaxation times (τv) at dilute conditions. The determined values, D r ≈ 2.3 × 103 s-1 and D t ≈ 1.0 × 10-11 m2 s-1, using depolarized and usual dynamic light scattering (DLS) techniques, respectively, proposed the consistent length and width of L ≈ 170 nm and W ≈ 7.6 nm via a theoretical model for monodisperse rigid rods dispersed in pure water. The viscoelastic behavior for aqueous CNC suspensions containing spherical probe particles was examined using DLS rheological techniques. The obtained value of τv = 1.0 × 10-4 s fairly agrees with that of (6D r)-1 ≈ 7.4 × 10-5 s. Because the theoretical model for monodisperse rods denotes the relationship τv = (6D r)-1, this observation strongly confirms that the CNC sample behaves as approximately monodisperse rigid rodlike particles. Transmission electron microscopy (TEM) images clearly demonstrated a bimodal distribution in rod length with major and small minor peaks at ca. 150 and 240 nm, respectively. Then, the reason for the observed disagreement between the L values resulted from the transport coefficients and the major peak in TEM images is the presence of the small minor component with L ≈ 240 nm. Consequently, individual nanosize rodlike crystalline particles in the CNC sample well disperse without forming large aggregations because of strong interactions and behave as isolated individual rods in dilute aqueous suspensions.

7.
J Phys Chem B ; 120(37): 9978-86, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27559988

RESUMO

Poly(N-methylglycine) (NMGn) and poly(N-ethylglycine) (NEGn) obtained by polymerization reactions initiated by benzylamine have no carboxy termini, such as those in normal polyamides, but have only amino termini, which exist primarily as cations in aqueous media at a pH value of ca. 9.5, observed in aqueous solutions without any buffer reagents. Therefore, polypeptoids, such as NMGn and NEGn, possessing a degree of polymerization (DP) higher than a certain value behave as cationic monopolar polymeric chain molecules in aqueous solution. It has not been clarified so far whether such a monopolar chain molecule exhibits dielectric relaxation (DR) behavior resulting from its molecular motions in aqueous media as dipolar chain molecules. DR measurements revealed that NMG19 and NEG17, possessing DPs of 19 and 17, respectively, dissolved in pure water clearly demonstrated pronounced DR behavior caused by fluctuating molecular motions of cationic termini at relaxation times of ca. 4 and 9 ns at 10 °C (283 K). The hydration numbers of NMG19 and NEG17 per monomeric residue (nm) in aqueous solution were also evaluated via DR data as functions of temperature, and the nm value of ca. 4.5 at 10 °C showed a remarkable reduction to ca. 2.0 around 40 °C (313 K) and 30 °C (303 K), depending on differences in the substituted group: methyl and ethyl groups. This temperature-dependent hydration/dehydration behavior found in NMG19 and NEG17 slightly influenced the sizes and molecular dynamics of the monopolar chain molecules in aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA