Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36986443

RESUMO

Kaurenoic acid (KA) is a diterpene extracted from Sphagneticola trilobata (L.) Pruski. KA presents analgesic properties. However, the analgesic activity and mechanisms of action of KA in neuropathic pain have not been investigated so far; thus, we addressed these points in the present study. A mouse model of neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. Acute (at the 7th-day post-CCI surgery) and prolonged (from 7-14th days post-CCI surgery) KA post-treatment inhibited CCI-induced mechanical hyperalgesia at all evaluated time points, as per the electronic version of von Frey filaments. The underlying mechanism of KA was dependent on activating the NO/cGMP/PKG/ATP-sensitive potassium channel signaling pathway since L-NAME, ODQ, KT5823, and glibenclamide abolished KA analgesia. KA reduced the activation of primary afferent sensory neurons, as observed by a reduction in CCI-triggered colocalization of pNF-κB and NeuN in DRG neurons. KA treatment also increased the expression of neuronal nitric oxide synthase (nNOS) at the protein level as well as the intracellular levels of NO in DRG neurons. Therefore, our results provide evidence that KA inhibits CCI neuropathic pain by activating a neuronal analgesic mechanism that depends on nNOS production of NO to silence the nociceptive signaling that generates analgesia.

2.
An Acad Bras Cienc ; 94(4): e20201058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477988

RESUMO

UVB-irradiation increases the risk of various skin disorders, therefore leading to inflammation and oxidative stress. In this sense, antioxidant-rich herbs such as Rosmarinus officinalis may be useful in minimizing the damage promoted by reactive oxygen species. In this work, we report the efficacy of a R. officinalis hydroethanolic extract (ROe)-loaded emulgel in preventing UVB-related skin damage. Total phenols were determined using Folin-Ciocalteu assay, and the main phytocomponents in the extract were identified by UHPLC-HRMS. Moreover, in vitro sun protection factor (SPF) value of ROe was also assessed, and we investigated the in vivo protective effect of an emulgel containing ROe against UVB-induced damage in an animal model. The ROe exhibited commercially viable SPF activity (7.56 ± 0.16) and remarkable polyphenolic content (24.15 ± 0.11 mg (Eq.GA)/g). HPLC-MS and UHPLC-HRMS results showcased that the main compounds in ROe were: rosmarinic acid, carnosic acid and carnosol. The evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ROe against several radicals and the capacity to reduce iron. Therefore, we demonstrated that topical application of the formulation containing ROe inhibited edema formation, myeloperoxidase activity, GSH depletion and maintained ferric reducing (FRAP) and ABTS scavenging abilities of the skin after UVB exposure.

3.
Food Technol Biotechnol ; 60(1): 21-28, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35440885

RESUMO

Research background: Extracts from grape pomace, including the wine, show many biological effects such as antioxidant and anti-inflammatory activities. Unfortunately, winemakers discard the bagasse, so the waste is not exploited, although it contains bioactive compounds with antioxidant and anti-inflammatory properties. The work aims to analyze the hydroethanolic extract of peels from Vitis labrusca agro-industrial waste and to evaluate its antinociceptive and anti-inflammatory properties. This study is relevant for reusing a residue and adding value to the grape economic chain. Experimental approach: A representative sample of pomace was obtained and the peels were used to produce the extract. The phenolic compounds were determined by mass spectrometry in multiple reaction monitoring mode and Folin-Ciocalteu colorimetric method, using gallic acid as standard. The biological analyses were carried out using mice orally treated with crude extract at doses of 30, 100 and 300 mg/kg. We evaluated mechanical hyperalgesia by the von Frey method, thermal heat hyperalgesia using a hot plate at 55 °C, paw edema using a pachymeter, and neutrophil recruitment by measurement of myeloperoxidase activity. The nephrotoxicity and hepatotoxicity were evaluated by biochemical analyses using blood samples that were collected after the Vitis labrusca administration. Results and conclusions: In all wet winemaking residues peel mass fraction was 75%, and in dry residues 59%. We identified nine anthocyanins (3-O-glucosides: peonidin, delphinidin, petunidin and malvidin; 3-p-coumaroyl-glucosides: cyanidin, peonidin, petunidin and malvidin, and malvidin-3,5-diglucoside), five flavonoids (apigenin-7-glucoside, luteolin-7-glucoside, quercetin-3-galactoside, isorhamnetin-3-glucoside and myricetin-3-rutinoside), and mass fraction of phenolic compounds, expressed as gallic acid equivalents, was 26.62 mg/g. In vivo assays showed that Vitis labrusca extract at mass fractions 100 and 300 mg/kg reduced carrageenan-induced mechanical and thermal hyperalgesia, 50% of the paw edema, and neutrophil recruitment. In addition, there were no indications of nephrotoxicity and hepatotoxicity. Our extract obtained from winemaking residue has analgesic and anti-inflammatory properties, related at least in part to the presence of phenolic compounds, and it is not toxic to renal and hepatic tissues. Novelty and scientific contribution: This bio-product can be used as an alternative to synthetic anti-inflammatory agents with the same pharmacological potential and fewer side effects. We demonstrated that Vitis labrusca winemaking waste can be used for the production of antinociceptive and anti-inflammatory products (nutraceutical, pharmaceutical and cosmetics) without toxicity, contributing to the environmental economy.

4.
Nat Prod Res ; 36(23): 6081-6084, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35227131

RESUMO

Pimenta pseudocaryophyllus (Gomes) Landrum is a Brazilian native plant. The mechanisms by which it promotes analgesia are unknown. We demonstrated the analgesic effect of P. pseudocaryophyllus dried extract (3 mg/kg; i.p.) in the following models of inflammatory pain (maximal inhibition): phenyl-p-benzoquinone (89%), formalin (72% - 1st phase and 96% - 2nd phase for flinches, and 50% - 1st phase and 71% - 2nd phase for licking behavior), complete Freund's adjuvant (95% - flinches and 33% - licking behavior), and carrageenin (56% - mechanical and 85% - thermal hyperalgesia) without motor impairment. Its analgesic effect depends on inhibiting neutrophil recruitment (95% - histopathology, 83% - myeloperoxidase activity, and 80% - LysM-eGFP mice), oxidative stress (86% - GSH and 98% - superoxide anion), and cytokine production (35% - IL-33, 80% - TNF-α, and 95% - IL-1ß). The present study advances in understanding the analgesic mechanisms of P. pseudocaryophyllus.


Assuntos
Pimenta , Camundongos , Animais , Infiltração de Neutrófilos , Dor/tratamento farmacológico , Estresse Oxidativo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Hiperalgesia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Inflamação/tratamento farmacológico , Citocinas/metabolismo
5.
J Ethnopharmacol ; 283: 114708, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34619320

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is used in traditional medicine in Brazil for inflammatory diseases treatment including asthma. The diterpene kaurenoic acid (KA) is one of its active compounds, but whether KA activity could explain the traditional use of S. trilobata in asthma is unknown. AIM: Investigate KA effect and mechanisms in asthma. METHODS: Experimental asthma was induced by ovalbumin immunization and challenge in male Swiss mice. KA (0.1-10 mg/kg, gavage) was administered 1 h before the ovalbumin challenge. Total leukocytes, eosinophil, and mast cell were counted in bronchoalveolar lavage fluid (BALF), and lung histopathology was performed. Lung mRNA expression of Th2 and regulatory T cells markers, and BALF type 2 cytokine production were quantitated. NFκB activation and oxidative stress-related components in pulmonary tissue were measured. RESULTS: KA inhibited the migration of total leukocytes and eosinophils to BALF, reduced lung histopathology (inflammatory cells and mast cells), mRNA expression of IL-33/ST2, STAT6/GATA-3 and NFκB activation in the lung, and reduced IL-33, IL-4, IL-5 production in the BALF. KA also reduced the mRNA expression of iNOS and gp91phox, and superoxide anion production accompanied by the induction of Nrf2, HO-1 and NQO1 mRNA expression, thus, exerting an antioxidant effect. Finally, KA induced nTreg-like and Tr1-like, but not Th3-like markers of suppressive T cell phenotypes in the lung tissue. CONCLUSION: KA prevents antigen-induced asthma by down-regulating Th2 and NFκB/cytokine-related pathways, and up-regulating Nrf2 and regulatory T cells' markers. Thus, explaining the ethnopharmacological use of S. trilobata for the treatment of lung inflammatory diseases.


Assuntos
Asteraceae/química , Asma/tratamento farmacológico , Citocinas/metabolismo , Diterpenos/farmacologia , Animais , Modelos Animais de Doenças , Diterpenos/administração & dosagem , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Fator de Transcrição GATA3/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ovalbumina/imunologia , Fator de Transcrição STAT6/metabolismo , Células Th2/imunologia
6.
J Ethnopharmacol ; 273: 113980, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33652112

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is a plant species belonging to the Asteraceae family. Kaurenoid acid (KA) is a diterpene metabolite and one of the active ingredients of Sphagneticola trilobata (L.) Pruski. Extracts containing KA are used in traditional medicine to treat pain, inflammation, and infection. AIM: The goal of the present study was to investigate the in vivo effects of KA (1-10 mg/kg, per oral gavage) upon LPS inoculation in mice by intraperitoneal (i.p.) or intraplantar (i.pl.; subcutaneous plantar injection) routes at the dose of 200 ng (200 µL or 25 µL, respectively). METHODS: In LPS paw inflammation, mechanical and thermal hyperalgesia MPO activity and oxidative imbalance (TBARS, GSH, ABTS and FRAP assays) were evaluated. In LPS peritonitis we evaluated leukocyte migration, cytokine production, oxidative stress, and NF-κB activation. RESULTS: KA inhibited LPS-induced mechanical and thermal hyperalgesia, MPO activity and modulated redox status in the mice paw. Pre- and post-treatment with KA inhibited migration of neutrophils and monocytes in LPS peritonitis. KA inhibited the pro-inflammatory/hyperalgesic cytokine (e.g., TNF-α, IL-1ß and IL-33) production while enhanced anti-inflammatory/analgesic cytokine IL-10 in peritoneal cavity. In agreement with the effect of KA over pro-inflammatory cytokines it inhibited oxidative stress (total ROS, superoxide production and superoxide positive cells) and NF-κB activation during peritonitis. CONCLUSION: KA efficiently dampens LPS-induced peritonitis and hyperalgesia in vivo, suggesting it as a suitable candidate to control excessive inflammation and pain during gram-negative bacterial infections and bringing mechanistic explanation to the ethnopharmacological application of Sphagneticola trilobata (L.) Pruski in inflammation and infection.


Assuntos
Analgésicos/uso terapêutico , Asteraceae/química , Diterpenos/uso terapêutico , Lipopolissacarídeos/toxicidade , Peritonite/induzido quimicamente , Analgésicos/química , Animais , Diterpenos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Peroxidação de Lipídeos , Masculino , Camundongos , Estrutura Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Dor/tratamento farmacológico , Peritonite/tratamento farmacológico , Peroxidase/metabolismo
7.
Nat Prod Res ; 33(6): 921-924, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29262719

RESUMO

Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug that is safe at therapeutic doses. However, acetaminophen overdose can be fatal. Currently, the only treatment available is the N-acetyl cysteine. The diterpene kaurenoic acid (ent-kaur-16-en-19-oic acid, KA) is the major constituent of Sphagneticola trilobata (L.) Pruski. KA presents anti-inflammatory, anti-nociceptive and antioxidant properties. In this study, we evaluated the efficacy of KA in a model of acetaminophen-induced hepatotoxicity. KA increased, in a dose-dependent manner, the survival rate after acetaminophen overdose. KA reduced acetaminophen-induced hepatic necrosis and ALT and AST levels. KA decreased acetaminophen-induced neutrophil and macrophage recruitment, oxidative stress and the production of IL-33, TNF-α and IL-1ß, alongside with normalisation of IL-10 levels in the liver. Therefore, KA showed preclinical efficacy in acetaminophen-induced hepatotoxicity and lethality.


Assuntos
Acetaminofen/toxicidade , Asteraceae/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Diterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Brasil , Diterpenos/isolamento & purificação , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Fator de Necrose Tumoral alfa/metabolismo
8.
Front Pharmacol ; 9: 1076, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319413

RESUMO

Background: Gout is the most common inflammatory arthritis worldwide. It is a painful inflammatory disease induced by the deposition of monosodium urate (MSU) crystals in the joints and peri-articular tissues. Sesquiterpene lactones (SLs) are secondary metabolite biosynthesized mainly by species from the family Asteraceae. It has been demonstrated that SLs present anti-inflammatory, analgesic, antitumoral, antiparasitic, and antimicrobial activities. In this study, we aimed at evaluating the efficacy of the SL budlein A in a model of acute gout arthritis in mice. Methods: Experiments were conducted in male Swiss or male LysM-eGFP mice. Animals were treated with budlein A (1 or 10 mg/kg) or vehicle 30 min before stimulus with MSU (100 µg/10 µL, intra-articular). Knee joint withdrawal threshold and edema were evaluated using electronic von Frey and caliper, respectively, 1-15 h after MSU injection. Leukocyte recruitment was determined by counting cells (Neubauer chamber), H&E staining, and using LysM-eGFP mice by confocal microscopy. Inflammasome components, Il-1ß, and Tnf-α mRNA expression were determined by RT-qPCR. IL-1ß and TNF-α production (in vitro) and NF-κB activation (in vitro and in vivo) were evaluated by ELISA. In vitro analysis using LPS-primed bone marrow-derived macrophages (BMDMs) was performed 5 h after stimulation with MSU crystals. For these experiments, BMDMs were either treated or pre-treated with budlein A at concentrations of 1, 3, or 10 µg/mL. Results: We demonstrated that budlein A reduced mechanical hypersensitivity and knee joint edema. Moreover, it reduced neutrophil recruitment, phagocytosis of MSU crystals by neutrophils, and Il-1ß and Tnf-α mRNA expression in the knee joint. In vitro, budlein A decreased TNF-α production, which might be related to the inhibition of NF-κB activation. Furthermore, budlein A also reduced the IL-1ß maturation, possibly by targeting inflammasome assembly in macrophages. Conclusion: Budlein A reduced pain and inflammation in a model of acute gout arthritis in mice. Therefore, it is likely that molecules with the ability of targeting NF-κB activation and inflammasome assembly, such as budlein A, are interesting approaches to treat gout flares.

10.
Inflammation ; 40(6): 2020-2032, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28780730

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by debilitating pain, cartilage destruction, and loss of joint function. Management of RA includes drugs that target NF-κB and downstream cytokine production. Therefore, molecules that act by inhibiting this signaling pathway without the severe side effects of, for instance, corticoids would be suitable therapeutic strategies. Budlein A is a sesquiterpene lactone with antinociceptive and anti-inflammatory properties related to the inhibition of pro-inflammatory cytokines and neutrophil recruitment. In this study, the effect of budlein A was evaluated in antigen-induced arthritis (AIA) in mice. At the 26th day, leukocyte recruitment to the knee joint, knee contents of proteoglycans, blood levels of ALT and AST, stomach tissue myeloperoxidase activity, and RT-qPCR for pro-inflammatory gene mRNA expression in knee joint samples was performed. NF-κB luciferase activity was evaluated in RAW 264.7 macrophages. Budlein A treatment dose-dependently inhibited AIA-induced mechanical hyperalgesia, edema, total leukocytes and neutrophil recruitment, and proteoglycan degradation. Budlein A did not induce gastric or liver damage. Budlein also inhibited AIA-induced Il-33, Tnf, Il-1ß, preproET-1, and Cox-2 mRNA expression. In vitro, budlein reduced TNF- and IL-1ß-induced NF-κB activity in RAW 264.7 macrophages. Altogether, we demonstrate that budlein A ameliorates AIA-induced inflammation and pain by targeting NF-κB. Importantly, budlein A does not induce in vivo side effects, suggesting that it possesses a favorable pre-clinical profile as analgesic and it is a prosperous molecule to be further investigated for the treatment of RA.


Assuntos
Artrite Experimental/tratamento farmacológico , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Antígenos/efeitos adversos , Artrite Experimental/induzido quimicamente , Citocinas/efeitos dos fármacos , Inflamação/prevenção & controle , Camundongos , NF-kappa B/antagonistas & inibidores , Dor/prevenção & controle , Células RAW 264.7
11.
PLoS One ; 11(2): e0149656, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895409

RESUMO

Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1ß. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Asteraceae/química , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/biossíntese , Diterpenos/farmacologia , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Animais , Brasil , Carragenina/antagonistas & inibidores , Diterpenos/química , Edema , Interleucina-1beta/biossíntese , Masculino , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Cavidade Peritoneal , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
12.
Phytother Res ; 29(7): 1097-101, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25851311

RESUMO

Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1ß, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hypericum/química , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Antracenos , Anti-Inflamatórios/farmacologia , Antioxidantes/uso terapêutico , Aspartato Aminotransferases/sangue , Glutationa/metabolismo , Masculino , Camundongos , Perileno/análogos & derivados , Perileno/análise , Floroglucinol/análogos & derivados , Floroglucinol/análise , Plantas Medicinais/química , Quercetina/análise , Rutina/análise , Terpenos/análise , Fator de Necrose Tumoral alfa/metabolismo
13.
J Nat Prod ; 77(11): 2488-96, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25394199

RESUMO

Pimaradienoic acid (1) is a pimarane diterpene (ent-pimara-8(14),15-dien-19-oic acid) extracted at high amounts from various plants including Vigueira arenaria Baker. Compound 1 inhibited carrageenan-induced paw edema and acetic acid-induced abdominal writhing, which are its only known anti-inflammatory activities. Therefore, it is important to further investigate the analgesic effects of 1. Oral administration of 1 (1, 3, and 10 mg/kg) inhibited the acetic acid-induced writhing. This was also observed at 10 mg/kg via sc and ip routes. Both phases of the formalin- and complete Freund's adjuvant (CFA)-induced paw flinch and time spent licking the paw were inhibited by 1. Compound 1 inhibited carrageenan-, CFA-, and PGE2-induced mechanical hyperalgesia. Treatment with 1 inhibited carrageenan-induced production of TNF-α, IL-1ß, IL-33, and IL-10 and nuclear factor κB activation. Pharmacological inhibitors also demonstrated that the analgesic effects of 1 depend on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. Compound 1 did not alter plasma levels of AST, ALT, or myeloperoxidase activity in the stomach. These results demonstrate that 1 causes analgesic effects associated with the inhibition of NF-κB activation, reduction of cytokine production, and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Ácido Acético/farmacologia , Analgésicos/farmacologia , Carragenina/farmacologia , GMP Cíclico/metabolismo , Diterpenos/química , Edema/induzido quimicamente , Adjuvante de Freund/farmacologia , Hiperalgesia/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Canais KATP/efeitos dos fármacos , Estrutura Molecular , Dor/tratamento farmacológico , Canais de Potássio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
14.
AAPS PharmSciTech ; 15(1): 86-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24249253

RESUMO

Pimenta pseudocaryophyllus is a Brazilian native plant that presents high concentrations of flavonoids and other polyphenolic compounds. Herein, we evaluated: (1) the chemical properties of P. pseudocaryophyllus ethanolic extract (PPE), (2) the in vitro antioxidant activity (AA) of PPE and of two different topical formulations (F1 and F2) containing PPE, (3) physico-chemical and functional stability, (4) in vitro release of PPE, and (5) in vivo capacity of formulations to prevent UV-B irradiation-induced skin damage. Results show that the polyphenol and flavonoid contents in PPE were 199.33 and 28.32 mg/g, respectively, and HPLC results show the presence of eugenol, tannic acid, and rutin. Evaluation of the in vitro AA of PPE demonstrated a dose-dependent effect and an IC50 of 4.75 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3.0 µg/mL in 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The ferric-reducing antioxidant power (FRAP assay) was 0.046 µmol/L trolox equivalent/µg/mL of extract. Among the AA, only the capacity to scavenge DPPH radical of PPE was maintained in F1 and F2. In addition, both formulations satisfactorily released the extract. The evaluation of the functional stability of F1 and F2 did not demonstrate loss of activity by storage at room temperature and at 4°C/6 months. In irradiated mice, treatment with F1 and F2 added with PPE significantly increased the capacity to scavenge ABTS radical and the FRAP of skin compared to vehicle-treated mice. In conclusion, the present results suggest that formulations containing PPE may be a topical source of antioxidant compounds to decrease oxidative damages of the skin.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pimenta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Benzotiazóis/química , Compostos de Bifenilo/química , Química Farmacêutica/métodos , Etanol/química , Camundongos , Camundongos Pelados , Fenóis/química , Fenóis/farmacologia , Picratos/química , Pele/efeitos dos fármacos , Ácidos Sulfônicos/química , Raios Ultravioleta/efeitos adversos
15.
Bioorg Med Chem ; 21(18): 5870-5, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23916147

RESUMO

Microbial transformation stands out among the many possible semi-synthetic strategies employed to increase the variety of chemical structures that can be applied in the search for novel bioactive compounds. In this paper we obtained ent-pimaradienoic acid (1, PA, ent-pimara-8(14),15-dien-19-oic acid) derivatives by fungal biotransformation using Aspergillus niger strains. To assess the ability of such compounds to inhibit vascular smooth muscle contraction, we also investigated their spasmolytic effect, along with another five PA derivatives previously obtained in our laboratory, on aortic rings isolated from male Wistar rats. The microbial transformation experiments were conducted at 30°C using submerged shaken liquid culture (120 rpm) for 10 days. One known compound, 7α-hydroxy ent-pimara-8(14),15-dien-19-oic acid (2), and three new derivatives, 1ß-hydroxy ent-pimara-6,8(14),15-trien-19-oic acid (3), 1α,6ß,14ß-trihydroxy ent-pimara-7,15-dien-19-oic acid (4), and 1α,6ß,7α,11α-tetrahydroxy ent-pimara-8(14),15-dien-19-oic acid (5), were isolated and identified on the basis of spectroscopic analyses and computational studies. The compounds obtained through biotransformation (2-5) did not display a significant antispasmodic activity (values ranging from 0% to 16.8% of inhibition); however the previously obtained diterpene, methyl 7α-hydroxy ent-pimara-8(14),15-dien-19-oate (8), showed to be very effective (82.5% of inhibition). In addition, our biological results highlight the importance to study the antispasmodic potential of a large number of novel diterpenes, to conduct further structure-activity relationship investigations.


Assuntos
Aspergillus niger/metabolismo , Diterpenos/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Asteraceae/metabolismo , Biotransformação , Diterpenos/química , Diterpenos/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Conformação Molecular , Contração Muscular/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Estereoisomerismo , Relação Estrutura-Atividade
16.
Phytother Res ; 27(10): 1502-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23193079

RESUMO

The present study describes the antimicrobial activity of five pimarane-type diterpenes obtained by fungal biotransformation against several nosocomial multidrug-resistant bacteria. Among the investigated metabolites, ent-8(14),15-pimaradien-3ß-ol was the most active compound, with very promising minimal inhibitory concentration values (between 8.0 and 25.0 µg mL(-1)). Time-kill assays using this metabolite against Staphylococcus aureus (HCRP180) revealed that this compound exerted its bactericidal effect within 24 h at all the evaluated concentrations (8.0, 16.0, and 24.0 µg mL(-1)). When this metabolite was associated with vancomycin at their minimal bactericidal concentration values, the resulting combination was able to drastically reduce the number of viable strains of S. aureus within the first 6 h, compared with these chemicals alone. The checkerboard assays conducted against this microorganism did not evidence any synergistic effects when this same combination was employed. In conclusion, our results point out that ent-8(14),15-pimaradien-3ß-ol is an important metabolite in the search for new effective antimicrobial agents.


Assuntos
Abietanos/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Abietanos/química , Abietanos/isolamento & purificação , Antibacterianos/química , Antibacterianos/isolamento & purificação , Aspergillus ochraceus/metabolismo , Asteraceae/química , Biotransformação , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Raízes de Plantas/química , Vancomicina/farmacologia
17.
Chem Biodivers ; 9(8): 1465-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22899607

RESUMO

The schistosomicidal effects of pimaradienoic acid (PA) and two derivatives, obtained by fungal transformation in the presence of Aspergillus ochraceus, were investigated. PA was the only compound with antischistosomal activity among the three diterpenes studied, with the ability to significantly reduce the viability of the parasites at concentrations ranging from 25 to 100 µM. PA also promoted morphological alterations of the tegument of Schistosoma mansoni, separated all the worm couples, and affected the production and development of eggs. Moreover, this compound was devoid of toxicity toward human fibroblasts. In a preliminary in vivo experiment, PA at a dose of 100 mg/kg significantly diminished the number of parasites in infected Balb/c mice. Taken together, these results show that PA may be potentially employed in the discovery of novel schistosomicidal agents, and that diterpenes are an important class of natural compounds for the investigation of agents capable of fighting the parasite responsible for human schistosomiasis.


Assuntos
Aspergillus ochraceus/metabolismo , Diterpenos/metabolismo , Diterpenos/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/metabolismo , Esquistossomicidas/uso terapêutico , Animais , Asteraceae/química , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos/química , Diterpenos/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Schistosoma mansoni/crescimento & desenvolvimento , Esquistossomose mansoni/parasitologia , Esquistossomicidas/química , Esquistossomicidas/farmacologia
18.
J Nat Prod ; 75(5): 896-904, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22574649

RESUMO

Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-α and IL-1ß. Furthermore, the analgesic effect of 1 was inhibited by l-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.


Assuntos
Ácido Acético/farmacologia , Asteraceae/química , Proteínas Quinases Dependentes de GMP Cíclico/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Diterpenos/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Canais KATP/efeitos dos fármacos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Administração Oral , Animais , Carbazóis/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citocinas/biossíntese , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Formaldeído/farmacologia , Adjuvante de Freund/efeitos adversos , Adjuvante de Freund/farmacologia , Glibureto/farmacologia , Injeções Intraperitoneais , Interleucina-8/efeitos dos fármacos , Camundongos , Estrutura Molecular , NG-Nitroarginina Metil Éster/farmacologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos
19.
Molecules ; 15(12): 8553-66, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21116225

RESUMO

In the present work, the anticariogenic activities of three pimarane-type diterpenes obtained by fungal biotransformation were investigated. Among these metabolites, ent-8(14),15-pimaradien-19-ol was the most active compound, displaying very promising MIC values (ranging from 1.5 to 4.0 µg mL(-1)) against the main microorganisms responsible for dental caries: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, and Lactobacillus casei. Time kill assays performed with ent-8(14),15-pimaradien-19-ol against the primary causative agent S. mutans revealed that this compound only avoids growth of the inoculum in the first 12 h (bacteriostatic effect). However, its bactericidal effect is clearly noted thereafter (between 12 and 24 h). The curve profile obtained by combining ent-8(14),15-pimaradien-19-ol and chlorhexidine revealed a significant reduction in the time necessary for killing S. mutans compared with each of these two chemicals alone. However, no synergistic effect was observed using the same combination in the checkerboard assays against this microorganism. In conclusion, our results point out that ent-8(14),15-pimaradien-19-ol is an important metabolite in the search for new effective anticariogenic agents.


Assuntos
Abietanos/farmacologia , Antibacterianos/farmacologia , Cárie Dentária/tratamento farmacológico , Fungos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Abietanos/química , Antibacterianos/química , Cárie Dentária/microbiologia , Humanos
20.
Phytomedicine ; 16(10): 904-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19524419

RESUMO

Budlein A has been reported to exert some analgesic and anti-inflammatory properties. In this study, we have evaluated its effect on LPS-induced leukocyte recruitment in vivo and the mechanisms involved in its anti-inflammatory activity. In vivo, intravital videomicroscopy was used to determine the effects of budlein A on LPS-induced leukocyte-endothelial cell interactions in the murine cremasteric microcirculation. In vitro, the effects of budlein A on LPS-induced cytokine, chemokine and nitrites release, T-cell proliferative response as well as cell adhesion molecule expression (CAM) were evaluated. In vivo, intraperitoneal administration of budlein A (2.6 mM/kg) caused a significant reduction of LPS-induced leukocyte rolling flux, adhesion and emigration by 84, 92 and 96% respectively. In vitro, T-cell proliferative response was also affected by budlein A. When murine J774 macrophages were incubated with the sesquiterpene lactone, LPS-induced IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and keratinocyte-derived chemokine (KC) release were concentration-dependently inhibited. In human umbilical vein endothelial cells (HUVECs), budlein A also reduced the production of TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), IL-8, nitrites and CAM expression elicited by LPS. Budlein A is a potent inhibitor of LPS-induced leukocyte accumulation in vivo. This effect appears to be mediated through inhibition of cytokine and chemokine release and down-regulation of CAM expression. Thus, it has potential therapeutic interest for the control of leukocyte recruitment that occurs in different inflammatory disorders.


Assuntos
Asteraceae/química , Células Endoteliais/efeitos dos fármacos , Imunossupressores/isolamento & purificação , Lactonas/farmacologia , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Moléculas de Adesão Celular/metabolismo , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , Dexametasona , Humanos , Lactonas/isolamento & purificação , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microcirculação , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Extratos Vegetais/farmacologia , Sesquiterpenos/isolamento & purificação , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA