Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Placenta ; 147: 59-67, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325050

RESUMO

INTRODUCTION: Hypotaurine, a precursor to taurine, is known for its antioxidant properties and is prominently present in fetal plasma and the placenta. Our previous research revealed that ezrin-knockout mice experience fetal growth retardation, coinciding with reduced hypotaurine levels in fetal plasma. This study aims to elucidate the expression and role of hypotaurine transporters within the placenta. METHODS: We employed quantitative RT-PCR to measure mRNA expression of GAT transporter family members in the placenta during mid-to-late gestation. LC/MS/MS was used to analyze the distribution of hypotaurine in different placental subregions. Immunohistochemistry was utilized to examine the localization of GAT2 in mice. Placental hypotaurine uptake from fetal circulation was studied via umbilical perfusion in rats. RESULTS: Among hypotaurine transporters, GAT2 exhibited increased mRNA and protein expression in murine placenta during mid-to-late gestation. Notably, GAT2/Slc6a13 mRNA and hypotaurine were most concentrated in the labyrinth of murine placenta. In contrast, enzymes responsible for hypotaurine synthesis, such as cysteine dioxygenase, cysteine sulfinic acid decarboxylase, and 2-aminoethanethiol dioxygenase, showed minimal expression in the labyrinth. These findings suggest that GAT2 is a key determinant of hypotaurine levels in the placental labyrinth. Immunohistochemical examination unveiled that GAT2 was predominantly localized on the fetal-facing plasma membrane within syncytiotrophoblasts, which co-localized with ezrin. In rat umbilical perfusion experiments, the GAT2/3 and TauT inhibitor, SNAP-5114, significantly reduced hypotaurine extraction from fetal circulation to the placenta. DISCUSSION: The results suggest that GAT2 plays a pivotal role in the concentrative uptake of hypotaurine from fetal plasma within syncytiotrophoblasts of the placenta.


Assuntos
Placenta , Espectrometria de Massas em Tandem , Taurina/análogos & derivados , Ratos , Camundongos , Gravidez , Feminino , Animais , Placenta/metabolismo , Trofoblastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Camundongos Knockout , RNA Mensageiro/metabolismo
2.
Mol Cancer Ther ; 23(2): 174-186, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37906695

RESUMO

The MAPK and PI3K pathways are involved in cancer growth and survival; however, the clinical efficacy of single inhibitors of each pathway is limited or transient owing to resistance mechanisms, such as feedback signaling and/or reexpression of receptor-type tyrosine kinases (RTK). This study identified a potent and novel kinase inhibitor, TAS0612, and characterized its properties. We found that TAS0612 is a potent, orally available compound that can inhibit p90RSK (RSK), AKT, and p70S6K (S6K) as a single agent and showed a strong correlation with the growth inhibition of cancer cells with PTEN loss or mutations, regardless of the presence of KRAS and BRAF mutations. Additional RSK inhibitory activity may differentiate the sensitivity profile of TAS0612 from that of signaling inhibitors that target only the PI3K pathway. Moreover, TAS0612 demonstrated broad-spectrum activity against tumor models wherein inhibition of MAPK or PI3K pathways was insufficient to exert antitumor effects. TAS0612 exhibited a stronger growth-inhibitory activity against the cancer cell lines and tumor models with dysregulated signaling with the genetic abnormalities described above than treatment with inhibitors against AKT, PI3K, MEK, BRAF, and EGFR/HER2. In addition, TAS0612 demonstrated the persistence of blockade of downstream growth and antiapoptotic signals, despite activation of upstream effectors in the signaling pathway and FoxO-dependent reexpression of HER3. In conclusion, TAS0612 with RSK/AKT/S6K inhibitory activity may provide a novel therapeutic strategy for patients with cancer to improve clinical responses and overcome resistance mechanisms.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Quinases S6 Ribossômicas 70-kDa , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Receptores Proteína Tirosina Quinases/farmacologia
3.
Cancer Sci ; 114(2): 654-664, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36282234

RESUMO

Genetic alterations in human epidermal growth factor receptor type 2 (HER2)/epidermal growth factor receptor (EGFR) are commonly associated with breast and lung cancers and glioblastomas. Cancers with avian erythroblastosis oncogene B (ERBB) deregulation are highly metastatic and can cause primary brain tumors. Currently, no pan-ERBB inhibitor with remarkable brain penetration is available. Here, TAS2940, a novel irreversible pan-ERBB inhibitor with improved brain penetrability, was evaluated for its efficacy against several ERBB aberrant cancer models. The selectivity of TAS2940 was evaluated by enzymatic kinase assays. The inhibitory effects of TAS2940 against ERBB genetic alterations were examined using MCF10A cells expressing various HER2 or EGFR mutations and other generic cell lines harboring deregulated ERBB expression. In vivo efficacy of TAS2940 was examined following oral treatment in subcutaneous or intracranial xenograft cancer models. TAS2940 was highly potent against cells harboring HER2/EGFR alterations. TAS2940 could selectively inhibit phosphorylation of targets and the growth of cancer cells with ERBB aberrations in vitro. TAS2940 also inhibited tumor growth in xenograft mouse models with ERBB aberrations: HER2 amplification, HER2/EGFR exon 20 insertions, and EGFR vIII mutation. TAS2940 was effective in the intracranial xenograft models of HER2/EGFR cancers and improved the survival of these mice. TAS2940 has promising therapeutic effects in preclinical study against cancers harboring HER2/EGFR mutations, especially metastatic and primary brain tumors. Our results highlight potential novel strategies against lung cancers with brain metastases harboring HER2/EGFR exon 20 insertions and glioblastomas with EGFR aberrations.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Receptor ErbB-2/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores ErbB/genética , Receptores ErbB/metabolismo
4.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 604-615, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34951129

RESUMO

TAS-114 is a dual deoxyuridine triphosphatase (dUTPase) and dihydropyrimidine dehydrogenase (DPD) inhibitor expected to widen the therapeutic index of capecitabine. Its maximum tolerated dose (MTD) was determined from a safety perspective in a combination study with capecitabine; however, its inhibitory effects on DPD activity were not assessed in the study. The dose justification to select its MTD as the recommended dose in terms of DPD inhibition has been required, but the autoinduction profile of TAS-114 made it difficult. To this end, an approach using a population pharmacokinetic (PPK)/pharmacodynamic (PD) model incorporating autoinduction was planned; however, the utility of this approach in the dose justification has not been reported. Thus, the aim of this study was to demonstrate the utility of a PPK/PD model incorporating autoinduction in the dose justification via a case study of TAS-114. Plasma concentrations of TAS-114 from 185 subjects and those of the endogenous DPD substrate uracil from 24 subjects were used. A two-compartment model with first-order absorption with lag time and an enzyme turnover model were selected for the pharmacokinetic (PK) model. Moreover, an indirect response model was selected for the PD model to capture the changes in plasma uracil concentrations. Model-based simulations provided the dose justification that DPD inhibition by TAS-114 reached a plateau level at the MTD, whereas exposures of TAS-114 increased dose dependently. Thus, the utility of a PPK/PD model incorporating autoinduction in the dose justification was demonstrated via this case study of TAS-114.


Assuntos
Pirimidinas , Sulfonamidas , Capecitabina , Inibidores Enzimáticos/farmacocinética , Humanos , Pirimidinas/uso terapêutico , Uracila/farmacocinética
5.
Mol Cancer Ther ; 18(4): 733-742, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787176

RESUMO

Activated HER2 is a promising therapeutic target for various cancers. Although several reports have described HER2 inhibitors in development, no covalent-binding inhibitor selective for HER2 has been reported. Here, we report a novel compound TAS0728 that covalently binds to HER2 at C805 and selectively inhibits its kinase activity. Once TAS0728 bound to HER2 kinase, the inhibitory activity was not affected by a high ATP concentration. A kinome-wide biochemical panel and cellular assays established that TAS0728 possesses high specificity for HER2 over wild-type EGFR. Cellular pharmacodynamics assays using MCF10A cells engineered to express various mutated HER2 genes revealed that TAS0728 potently inhibited the phosphorylation of mutated HER2 and wild-type HER2. Furthermore, TAS0728 exhibited robust and sustained inhibition of the phosphorylation of HER2, HER3, and downstream effectors, thereby inducing apoptosis of HER2-amplified breast cancer cells and in tumor tissues of a xenograft model. TAS0728 induced tumor regression in mouse xenograft models bearing HER2 signal-dependent tumors and exhibited a survival benefit without any evident toxicity in a peritoneal dissemination mouse model bearing HER2-driven cancer cells. Taken together, our results demonstrated that TAS0728 may offer a promising therapeutic option with improved efficacy as compared with current HER2 inhibitors for HER2-activated cancers. Assessment of TAS0728 in ongoing clinical trials is awaited (NCT03410927).


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/administração & dosagem , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA