Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Opin Chem Biol ; 73: 102277, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36867977

RESUMO

The immune system presents a complex array of processes designed to maintain homeostasis in malignant cellular growth. Malignancy is the result of a breakdown in immune surveillance by cancer cells evading immune recognition. Significant efforts have been made in modulating immune checkpoint signaling cascades to bypass the resulting immune evasion and establish an anticancer effect. More recently, it was discovered that a form of regulated cell death can involve the stimulation of immune response as its downstream effect and subsequently re-establish immune surveillance. This mechanism, known as immunogenic cell death (ICD), is being exploited as a target to prevent tumor relapse and prevent cancer metastasis. It is now appreciated that metal-based compounds play a key role in ICD activation due to their unique biochemical properties and interactions within cancer cells. With fewer than 1% of known anticancer agents documented as ICD inducers, recent efforts have been made to identify novel entities capable of stimulating a more potent anticancer immune response. While the recent reviews by us or others focus primarily on either discussing the chemical library of ICD inducers or intricate detailing of biological pathways associated with ICD, this review aims to bridge these two topics as a concise summary. Furthermore, early clinical evidence and future directions of ICD are briefly summarized.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Morte Celular Imunogênica , Morte Celular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/metabolismo
2.
Chem Soc Rev ; 51(14): 6177-6209, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35792133

RESUMO

In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética/métodos , Medicina de Precisão , Nanomedicina Teranóstica/métodos
3.
Bioact Mater ; 14: 76-85, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35310350

RESUMO

An increased demand for iron is a hallmark of cancer cells and is thought necessary to promote high cell proliferation, tumor progression and metastasis. This makes iron metabolism an attractive therapeutic target. Unfortunately, current iron-based therapeutic strategies often lack effectiveness and can elicit off-target toxicities. We report here a dual-therapeutic prodrug, DOXjade, that allows for iron chelation chemo-photothermal cancer therapy. This prodrug takes advantage of the clinically approved iron chelator deferasirox (ExJade®) and the topoisomerase 2 inhibitor, doxorubicin (DOX). Loading DOXjade onto ultrathin 2D Ti3C2 MXene nanosheets produces a construct, Ti 3 C 2 -PVP@DOXjade, that allows the iron chelation and chemotherapeutic functions of DOXjade to be photo-activated at the tumor sites, while potentiating a robust photothermal effect with photothermal conversion efficiencies of up to 40%. Antitumor mechanistic investigations reveal that upon activation, Ti 3 C 2 -PVP@DOXjade serves to promote apoptotic cell death and downregulate the iron depletion-induced iron transferrin receptor (TfR). A tumor pH-responsive iron chelation/photothermal/chemotherapy antitumor effect was achieved both in vitro and in vivo. The results of this study highlight what may constitute a promising iron chelation-based phototherapeutic approach to cancer therapy.

4.
Chem Soc Rev ; 51(4): 1212-1233, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35099487

RESUMO

Cancer is the deadliest disease in the world behind heart disease. Sadly, this remains true even as we suffer the ravages of the Covid-19 pandemic. Whilst current chemo- and radiotherapeutic treatment strategies have significantly improved the patient survival rate, disease reoccurrence continues to pose a deadly risk for all too many patients. Incomplete removal of tumour cells from the body increases the chances of metastasis and developing resistance against current treatments. Immunotherapy represents a therapeutic modality that has helped to overcome these limitations in recent decades. However, further progress is needed. So-called immunogenic cell death (ICD) is a recently discovered and unique mode of cell death that could trigger this necessary further progress. ICD involves stimulation of a tumour-specific immune response as a downstream effect. Facilitated by certain treatment modalities, cells undergoing ICD can trigger the IFN-γ mediated immune response involving cytotoxic T cells (CTLs) and γδ T cells that eradicate residual tumour cells. In recent years, there has been a significant increase in the number of small-molecules being tested as potential ICD inducers. A large number of these ICD inducers are metal-based complexes. In fact, anticancer metal drugs based on Pt, Ru, Ir, Cu, and Au are now known to give rise to an immune response against tumour cells as the result of ICD. Advances have also been made in terms of exploiting combinatorial and delivery strategies. In favourable cases, these approaches have been shown to increase the efficacy of otherwise ICD "silent" metal complexes. Taken in concert, rationally designed novel anticancer metal complexes that can act as ICD inducers show promise as potential new immunotherapies for neoplastic disease. This Tutorial Review will allow the readers to assess the progress in this fast-evolving field thus setting the stage for future advances.


Assuntos
Antineoplásicos , COVID-19 , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Morte Celular Imunogênica , Imunoterapia , Neoplasias/terapia , Pandemias , SARS-CoV-2
5.
Dalton Trans ; 51(4): 1533-1541, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34989720

RESUMO

Unambiguous assignment of redox sites on ferrocene coupled N-heterocyclic carbene gold(I) complexes [(Fc-NHC)2Au(I)]+ is critical to gain a greater mechanistic understanding of their activity in a cellular environment. Such information can be garnered with isolation and detailed characterization of the oxidized version of [(Fc-NHC)2Au(I)]+. Herein we disclose a study that unambiguously illustrates redox events pertaining to [(Fc-NHC)2Au(I)]+ that stem exclusively from ferrocene sites. This work also describes novel synthetic methodologies for isolating ferrocenium coupled N-heterocyclic carbene gold(I) complexes.

6.
Chem Sci ; 12(29): 9916-9921, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34377389

RESUMO

Photoacoustic imaging (PAI) relies on the use of contrast agents with high molar absorptivity in the NIR-I/NIR-II region. Expanded porphyrins, synthetic analogues of natural tetrapyrrolic pigments (e.g. heme and chlorophyll), constitute as potentially attractive platforms due to their NIR-II absorptivity and their ability to respond to stimuli. Here, we evaluate two expanded porphyrins, naphthorosarin (1) and octaphyrin (4), as stimuli responsive PA contrast agents for functional PAI. Both undergo proton-coupled electron transfer to produce species that absorb well in the NIR-II region. Octaphyrin (4) was successfully encapsulated into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) nanoparticles to afford OctaNPs. In combination with PAI, OctaNPs allowed changes in the acidic environment of the stomach to be visualized and cancerous versus healthy tissues to be discriminated.

7.
Chem Sci ; 12(21): 7547-7553, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34163845

RESUMO

Recent decades have witnessed the emergence of Au(i) bis-N-heterocyclic carbenes (NHCs) as potential anticancer agents. However, these systems exhibit little interaction with serum proteins (e.g., human serum albumin), which presumably impacts their pharmacokinetic profile and tumor exposure. Anticancer drugs bound to human serum albumin (HSA) often benefit from significant advantages, including longer circulatory half-lives, tumor targeted delivery, and easier administration relative to the drug alone. In this work, we present Au(i) bis-NHCs complexes, 7 and 9, capable of binding to HSA. Complex 7 contains a reactive maleimide moiety for covalent protein conjugation, whereas its congener 9 contains a naphthalimide fluorophore for non-covalent binding. A similar drug motif was used in both cases. Complexes 7 and 9 were prepared from a carboxylic acid functionalized Au(i) bis-NHC (complex 2) using a newly developed post-synthetic amide functionalization protocol that allows coupling to both aliphatic and aromatic amines. Analytical, and in vitro techniques were used to confirm protein binding, as well as cellular uptake and antiproliferative activity in A549 human lung cancer cells. The present findings highlight a hitherto unexplored approach to modifying Au(i) bis-NHC drug candidates for protein ligation and serve to showcase the relative benefits of covalent and non-covalent HSA binding.

8.
J Am Chem Soc ; 142(49): 20536-20541, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237764

RESUMO

Immunogenic cell death (ICD) is a way of reengaging the tumor-specific immune system. ICD can be induced by treatment with chemotherapeutics. However, only a limited number of drugs and other treatment modalities have been shown to elicit the biomarker responses characteristic of ICD and to provide an anticancer benefit in vivo. Here, we report a rationally designed redox-active Au(I) bis-N-heterocyclic carbene that induces ICD both in vitro and in vivo. This work benefits from a synthetic pathway that allows for the facile preparation of asymmetric redox-active Au(I) bis-N-heterocyclic carbenes.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/química , Ouro/química , Morte Celular Imunogênica/efeitos dos fármacos , Metano/análogos & derivados , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Compostos Heterocíclicos/química , Humanos , Metano/química , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transplante Heterólogo
9.
Chem ; 6(6): 1408-1419, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32864504

RESUMO

Tumor recurrence as a result of therapy-induced nuclear DNA lesions is a major issue in cancer treatment. Currently, only a few examples of potentially non-genotoxic drugs have been reported. Mitochondrial re-localization of ciprofloxacin, one of the most commonly prescribed synthetic antibiotics, is reported here as a new approach. Conjugating ciprofloxacin to a triphenyl phosphonium group (giving lead Mt-CFX), is used to enhance the concentration of ciprofloxacin in the mitochondria of cancer cells. The localization of Mt-CFX to the mitochondria induces oxidative damage to proteins, mtDNA, and lipids. A large bias in favor of mtDNA damage over nDNA was seen with Mt-CFX, contrary to classic cancer chemotherapeutics. Mt-CFX was found to reduce cancer growth in a xenograft mouse model and proved to be well tolerated. Mitochondrial relocalization of antibiotics could emerge as a useful approach to generating anticancer leads that promote cell death via the selective induction of mitochondrially-mediated oxidative damage.

10.
J Am Chem Soc ; 142(38): 16156-16160, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32914968

RESUMO

The NIR absorptivity of the metallotexaphyrin derivatives MMn, MGd, and MLu for photoacoustic (PA)-based imaging is explored in this study. All three complexes demonstrated excellent photostabilities; however, MMn provided the greatest PA signal intensities in both doubly distilled water and RAW 264.7 cells. In vivo experiments using a prostate tumor mouse model were performed. MMn displayed no adverse toxicity to major organs as inferred from hematoxylin and eosin (H&E) staining and cell blood count testing. MMn also allowed for PA-based imaging of tumors with excellent in vivo stability to provide 3D tumor diagnostic information. Based on the present findings and previous magnetic resonance imaging (MRI) studies, we believe MMn may have a role to play either as a stand-alone PA contrast agent or as a single molecule dual modal (PA and MR) imaging agent for tumor diagnosis.


Assuntos
Meios de Contraste/química , Manganês/química , Técnicas Fotoacústicas , Porfirinas/química , Neoplasias da Próstata/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA