Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Nanotechnol ; 17(9): 1015-1022, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995855

RESUMO

Current clinical brain tumour therapy practices are based on tumour resection and post-operative chemotherapy or X-ray radiation. Resection requires technically challenging open-skull surgeries that can lead to major neurological deficits and, in some cases, death. Treatments with X-ray and chemotherapy, on the other hand, cause major side-effects such as damage to surrounding normal brain tissues and other organs. Here we report the development of an integrated nanomedicine-bioelectronics brain-machine interface that enables continuous and on-demand treatment of brain tumours, without open-skull surgery and toxicological side-effects on other organs. Near-infrared surface plasmon characteristics of our gold nanostars enabled the precise treatment of deep brain tumours in freely behaving mice. Moreover, the nanostars' surface coating enabled their selective diffusion in tumour tissues after intratumoral administration, leading to the exclusive heating of tumours for treatment. This versatile remotely controlled and wireless method allows the adjustment of nanoparticles' photothermal strength, as well as power and wavelength of the therapeutic light, to target tumours in different anatomical locations within the brain.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Fotoquimioterapia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Ouro/uso terapêutico , Camundongos , Nanomedicina Teranóstica
2.
Adv Sci (Weinh) ; 8(5): 2002788, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717843

RESUMO

Surgical resection is commonly used for therapeutic management of different solid tumors and is regarded as a primary standard of care procedure, but precise localization of tumor margins is a major intraoperative challenge. Herein, a generalized method by optimizing gold nanoparticles for intraoperative detection and photothermal ablation of tumor margins is introduced. These nanoparticles are detectable by highly sensitive surface-enhanced Raman scattering imaging. This non-invasive technique assists in delineating the two surgically challenged tumors in live mice with orthotopic colon or ovarian tumors. Any remaining residual tumors are also ablated by using post-surgical adjuvant photothermaltherapy (aPTT), which results in microscale heat generation due to interaction of these nanoparticles with near-infrared laser. Ablation of these post-operative residual micro-tumors prolongs the survival of mice significantly and delays tumor recurrence by 15 days. To validate clinical translatability of this method, the pharmacokinetics, biodistribution, Raman contrast, aPTT efficiency, and toxicity of these nanoparticles are also investigated. The nanoparticles have long blood circulation time (≈24 h), high tumor accumulation (4.87 ± 1.73%ID g-1) and no toxicity. This high-resolution and sensitive intraoperative approach is versatile and can be potentially used for targeted ablation of residual tumor after resection within different organs.

3.
Nanoscale ; 12(39): 20546, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33016979

RESUMO

Correction for 'Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core-shell nanoparticles' by Asahi Tomitaka et al., Nanoscale, 2019, 11, 6489-6496, DOI: 10.1039/C9NR00242A.

4.
Nano Lett ; 20(10): 7655-7661, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32914987

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a promising cellular identification and drug susceptibility testing platform, provided it can be performed in a controlled liquid environment that maintains cell viability. We investigate bacterial liquid-SERS, studying plasmonic and electrostatic interactions between gold nanorods and bacteria that enable uniformly enhanced SERS. We synthesize five nanorod sizes with longitudinal plasmon resonances ranging from 670 to 860 nm and characterize SERS signatures of Gram-negative Escherichia coli and Serratia marcescens and Gram-positive Staphylococcus aureus and Staphylococcus epidermidis bacteria in water. Varying the concentration of bacteria and nanorods, we achieve large-area SERS enhancement that is independent of nanorod resonance and bacteria type; however, bacteria with higher surface charge density exhibit significantly higher SERS signal. Using cryo-electron microscopy and zeta potential measurements, we show that the higher signal results from attraction between positively charged nanorods and negatively charged bacteria. Our robust liquid-SERS measurements provide a foundation for bacterial identification and drug testing in biological fluids.


Assuntos
Mycobacterium tuberculosis , Análise Espectral Raman , Microscopia Crioeletrônica , Ouro , Testes de Sensibilidade Microbiana , Eletricidade Estática
5.
Sci Rep ; 10(1): 10115, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572041

RESUMO

Smart multifunctional nanoparticles with magnetic and plasmonic properties assembled on a single nanoplatform are promising for various biomedical applications. Owing to their expanding imaging and therapeutic capabilities in response to external stimuli, they have been explored for on-demand drug delivery, image-guided drug delivery, and simultaneous diagnostic and therapeutic (i.e. theranostic) applications. In this study, we engineered nanoparticles with unique morphology consisting of a superparamagnetic iron oxide core and star-shaped plasmonic shell with high-aspect-ratio gold branches. Strong magnetic and near-infrared (NIR)-responsive plasmonic properties of the engineered nanostars enabled multimodal quantitative imaging combining advantageous functions of magnetic resonance imaging (MRI), magnetic particle imaging (MPI), photoacoustic imaging (PAI), and image-guided drug delivery with a tunable drug release capacity. The model drug molecules bound to the core-shell nanostars were released upon NIR illumination due to the heat generation from the core-shell nanostars. Moreover, our simulation analysis showed that the specific design of the core-shell nanostars demonstrated a pronounced multipolar plasmon resonance, which has not been observed in previous reports. The multimodal imaging and NIR-triggered drug release capabilities of the proposed nanoplatform verify their potential for precise and controllable drug release with different applications in personalized medicine.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Nanopartículas Multifuncionais/química , Animais , Liberação Controlada de Fármacos/fisiologia , Fenômenos Eletromagnéticos , Compostos Férricos/química , Ouro , Humanos , Imageamento por Ressonância Magnética , Magnetismo , Nanopartículas Multifuncionais/uso terapêutico , Imagem Multimodal , Fototerapia/métodos , Medicina de Precisão/métodos
6.
Adv Colloid Interface Sci ; 279: 102157, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32330734

RESUMO

Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.


Assuntos
Antineoplásicos/farmacologia , Fosfatos de Cálcio/metabolismo , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Fosfatos de Cálcio/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Humanos , Nanopartículas/química , Neoplasias/metabolismo , Engenharia Tecidual , Microambiente Tumoral/efeitos dos fármacos
7.
Nanoscale ; 12(17): 9603-9615, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314980

RESUMO

The co-precipitation of calcium phosphate nanoparticles (CaPs) in the presence of nucleotide chains such as polynucleotides (i.e., plasmid DNA and siRNA) and oligonucleotides has been extensively used for pre-clinical gene or drug delivery and immunotherapy studies. However, the exact role of these molecules in mineralization and tuning the physicochemical characteristics of the synthesized CaPs is still not entirely clear. In this study, we evaluated the effects of three different CpG oligodeoxynucleotides (ODN) and two representative nucleic acids (siRNA and DNA), when used as templates for the formation of CaPs. We examined the influence of CpGs with naturally-occurring phosphodiester or modified phosphorothioate backbones on the homogeneous formation of CaPs from a modified simulated body fluid solution. The hydrodynamic size, size polydispersity, morphology and surface charge of the CaPs were used as the most critical checkpoints to unravel the involved mechanisms. Our results show that the characteristics of CaPs are highly dependent on the composition, backbone, sequence and concentrations of the CpGs. The CpG type and concentration control the size distribution of the mineralized CaPs and their immunostimulation performance as verified by the activation of dendritic cells and secretion of the pro-inflammatory interleukin-6 (IL-6) cytokine, type I interferon-α (IFN-α) and co-stimulatory CD80, CD86 and CD40 markers. This study paves the way for better design of more efficient CaPs loaded with different types of CpGs for immunostimulation applications as vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/química , Fosfatos de Cálcio/química , Nanopartículas/química , Oligodesoxirribonucleotídeos/química , Linhagem Celular , Precipitação Química , DNA/química , DNA/imunologia , Células Dendríticas/imunologia , Humanos , Estrutura Molecular , Oligodesoxirribonucleotídeos/imunologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/imunologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34335877

RESUMO

Hollow particles have been extensively used in bioanalytical and biomedical applications for almost two decades due to their unique and tunable optoelectronic properties as well as their significantly high loading capacities. These intrinsic properties led them to be used in various bioimaging applications as contrast agents, controlled delivery (i.e. drugs, nucleic acids and other biomolecules) platforms and photon-triggered therapies (e.g. photothermal and photodynamic therapies). Since recent studies showed that imaging-guided targeted therapeutics have higher success rates, multimodal theranostic platforms (combination of one or more therapy and diagnosis modality) have been employed more often and hollow particles (i.e. nanoshells) have been one of the most efficient candidates to be used in multiple-purpose platforms, owing to their intrinsic properties that enable synergistic multimodal performance. In this review, recent advances in the applications of such hollow particles fabricated with various routes (either inorganic or organic based) were summarized to delineate strategies for tuning their properties for more efficient biomedical performance by overcoming common biological barriers. This review will pave the ways for expedited progress in design of next generation of hollow particles for clinical applications.

9.
ACS Biomater Sci Eng ; 5(7): 3201-3211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592442

RESUMO

Calcium phosphates (CaPs), constituents of the inorganic phase of natural bone, are highly biocompatible and biodegradable. Strontium (Sr) regulates the formation and resorption of bone. Incorporation of Sr into CaPs may target genes of interest to bone cells while regulating their function. In this work, we developed a single-step synthesis method to prepare Sr-doped CaP nanoparticles (SrCaP-DNA NPs) by using DNA as a template for controlling the mineralization and the stability of the colloidal solution. The resulting nanoparticles were monodispersed with well-controlled size, morphology, and composition. By using this method, we were able to fabricate CaP NPs with varying contents of Sr2+. We demonstrated that the stability of CaP NPs in extracellular environments increased when Sr2+ partially replaced Ca2+ in CaP NPs. We showed that the cellular uptake of SrCaP-DNA NPs and the efficiency of gene transfer and alkaline phosphatase activity in human fetal osteoblastic cell line (hFOB1.19) were dependent on the content of Sr2+ in NPs. Together with other studies, our results suggest SrCaP-DNA NPs can be optimized for targeted gene transfer to regulate function of bone cells, enabling applications such as bone tissue engineering and treating bone diseases.

10.
Nanoscale ; 11(13): 6489-6496, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30892348

RESUMO

Multifunctional nanoparticles with a magnetic core and gold shell structures are emerging multi-modal imaging probes for disease diagnosis, image-guided therapy, and theranostic applications. Owing to their multi-functional magnetic and plasmonic properties, these nanoparticles can be used as contrast agents in multiple complementary imaging modalities. Magnetic particle imaging (MPI) is a new pre-clinical imaging system that enables real-time imaging with high sensitivity and spatial resolution by detecting the dynamic responses of nanoparticle tracers. In this study, we evaluated the dynamic magnetic properties and MPI imaging performances of core-shell nanoparticles with a magnetic core coated with a gold shell. A change in AC hysteresis loops was detected before and after the formation of the gold shell on magnetic core nanoparticles, suggesting the influence of the core-shell interfacial effect on their dynamic magnetic properties. This alteration in the dynamic responses resulted in an enhancement of the MPI imaging capacity of magnetic nanoparticles. The gold shell coating also enabled a simple and effective functionalization of the nanoparticles with a brain glioma targeting ligand. The enhanced MPI imaging capacity and effective functionality suggest the potential application of the magnetic-gold core-shell nanoparticles for MPI disease diagnostics.


Assuntos
Ouro/química , Nanopartículas de Magnetita/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Meios de Contraste/química , Compostos Férricos/química , Humanos , Nanopartículas de Magnetita/toxicidade , Microscopia Eletrônica de Transmissão , Compostos de Sulfidrila/química
11.
ACS Nano ; 13(3): 2858-2869, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30714717

RESUMO

Nanoparticles' enhanced permeation and retention (EPR) variations due to tumor heterogeneity in naturally occurring brain tumors are commonly neglected in preclinical nanomedicine studies. Recent pathological studies have shown striking similarities between brain tumors in humans and dogs, indicating that canine brain tumors may be a valuable model to evaluate nanoparticles' EPR in this context. We recruited canine clinical cases with spontaneous brain tumors to investigate nanoparticles' EPR in different brain tumor pathologies using surface-enhanced Raman spectroscopy (SERS). We used gold nanoparticles due to their surface plasmon effect that enables their sensitive and microscopic resolution detection using the SERS technique. Raman microscopy of the resected tumors showed heterogeneous EPR of nanoparticles into oligodendrogliomas and meningiomas of different grades, without any detectable traces in necrotic parts of the tumors or normal brain. Raman observations were confirmed by scanning electron microscopy (SEM) and X-ray elemental analyses, which enabled localization of individual nanoparticles embedded in tumor tissues. Our results demonstrate nanoparticles' EPR and its variations in clinically relevant, spontaneous brain tumors. Such heterogeneities should be considered alongside routine preoperative imaging and histopathological analyses in order to accelerate clinical management of brain tumors using nanomedicine approaches.


Assuntos
Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico por imagem , Nanomedicina , Nanopartículas/química , Animais , Análise Química do Sangue , Neoplasias Encefálicas/cirurgia , Cães , Ouro/química , Imageamento por Ressonância Magnética , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície
12.
Cell Death Discov ; 4: 113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534421

RESUMO

Glioblastoma is the most common yet most lethal of primary brain cancers with a one-year post-diagnosis survival rate of 65% and a five-year survival rate of barely 5%. Recently the U.S. Food and Drug Administration approved a novel fourth approach (in addition to surgery, radiation therapy, and chemotherapy) to treating glioblastoma; namely, tumor treating fields (TTFields). TTFields involves the delivery of alternating electric fields to the tumor but its mechanisms of action are not fully understood. Current theories involve TTFields disrupting mitosis due to interference with proper mitotic spindle assembly. We show that TTFields also alters cellular membrane structure thus rendering it more permeant to chemotherapeutics. Increased membrane permeability through the imposition of TTFields was shown by several approaches. For example, increased permeability was indicated through increased bioluminescence with TTFields exposure or with the increased binding and ingress of membrane-associating reagents such as Dextran-FITC or ethidium D or with the demonstration by scanning electron microscopy of augmented number and sizes of holes on the cellular membrane. Further investigations showed that increases in bioluminescence and membrane hole production with TTFields exposure disappeared by 24 h after cessation of alternating electric fields thus demonstrating that this phenomenom is reversible. Preliminary investigations showed that TTFields did not induce membrane holes in normal human fibroblasts thus suggesting that the phenomenom was specific to cancer cells. With TTFields, we present evidence showing augmented membrane accessibility by compounds such as 5-aminolevulinic acid, a reagent used intraoperatively to delineate tumor from normal tissue in glioblastoma patients. In addition, this mechanism helps to explain previous reports of additive and synergistic effects between TTFields and other chemotherapies. These findings have implications for the design of combination therapies in glioblastoma and other cancers and may significantly alter standard of care strategies for these diseases.

13.
Nat Biomed Eng ; 2(9): 696-705, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30505627

RESUMO

The detection and analysis of rare blood biomarkers is necessary for early diagnosis of cancer and to facilitate the development of tailored therapies. However, current methods for the isolation of circulating tumour cells (CTCs) or nucleic acids present in a standard clinical sample of only 5-10 ml of blood provide inadequate yields for early cancer detection and comprehensive molecular profiling. Here, we report the development of a flexible magnetic wire that can retrieve rare biomarkers from the subject's blood in vivo at a much higher yield. The wire is inserted and removed through a standard intravenous catheter and captures biomarkers that have been previously labelled with injected magnetic particles. In a proof-of-concept experiment in a live porcine model, we demonstrate the in vivo labelling and single-pass capture of viable model CTCs in less than 10 s. The wire achieves capture efficiencies that correspond to enrichments of 10-80 times the amount of CTCs in a 5-ml blood draw, and 500-5,000 times the enrichments achieved using the commercially available Gilupi CellCollector.

14.
Oncotarget ; 9(98): 37252-37267, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30647857

RESUMO

Delivery of imaging reagents and drugs to tumors is essential for cancer diagnosis and therapy. In addition to therapeutic and diagnostic functionalities, peptides have potential benefits such as biocompatibility, ease to synthesize, smaller size, by-passing off-target side effects, and achieving the beneficial effects with lower-administered dosages. A particular type of peptide known as cell penetrating peptides (CPP) have been predominantly studied during last twenty years as they are not only capable to translocate themselves across membranes but also allow carrier drugs to translocate across plasma membrane, by different mechanisms depending on the CPP. This is of great potential importance in drug delivery systems, as the ability to pass across membranes is crucial to many drug delivery systems. In spite of significant progress in design and application of CPP, more investigations are required to further improve their delivery to tumors, with reduced side-effect and enhanced therapeutic efficacy. In this review, we emphasis on current advancements in preclinical and clinical trials based on using CPP for more efficient delivery of anti-cancer drugs and imaging reagents to cancer tissues and individual cells associated with them. We discuss the evolution of the CPPs-based strategies for targeted delivery, their current status and strengths, along with summarizing the role of CPPs in targeted drug delivery. We also discuss some recently reported diagnostic applications of engineered protease-responsive substrates and activable imaging complexes. We highlight the recent clinical trial data by providing a road map for better design of the CPPs for future preclinical and clinical applications.

15.
Nanoscale ; 10(1): 184-194, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29210401

RESUMO

Image-guided drug delivery is an emerging strategy in the field of nanomedicine. The addition of image guidance to a traditional drug delivery system is expected to achieve highly efficient treatment by tracking the drug carriers in the body and monitoring their effective accumulation in the targeted tissues. In this study, we developed multifunctional magneto-plasmonic liposomes (MPLs), a hybrid system combining liposomes and magneto-plasmonic nanoparticles for a triple-modality image-guided drug delivery. Tenofovir disoproxil fumarate, an antiretroviral drug used to treat human immunodeficiency virus type 1 (HIV-1), was encapsulated into the MPLs to enable the treatment in the brain microenvironment, which is inaccessible to most of the drugs. We found strong negative and positive contrasts originating from the magnetic core of MPLs in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), respectively. The gold shell of MPLs showed bright positive contrast in X-ray computed tomography (CT). MPLs achieved enhanced transmigration across an in vitro blood-brain barrier (BBB) model by magnetic targeting. Moreover, MPLs provided desired therapeutic effects against HIV infected microglia cells.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/tratamento farmacológico , Lipossomos , Antirretrovirais/administração & dosagem , Barreira Hematoencefálica , Linhagem Celular , Ouro , Humanos , Magnetismo , Nanopartículas Metálicas , Microglia/efeitos dos fármacos , Microglia/virologia , Imagem Multimodal , Nanomedicina , Tenofovir/administração & dosagem
16.
Nanoscale ; 9(47): 18723-18730, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29165498

RESUMO

Magnetic Particle Imaging (MPI) is an emerging, whole body biomedical imaging technique, with sub-millimeter spatial resolution and high sensitivity to a biocompatible contrast agent consisting of an iron oxide nanoparticle core and a biofunctionalized shell. Successful application of MPI for imaging of cancer depends on the nanoparticles (NPs) accumulating at tumors at sufficient levels relative to other sites. NPs' physiochemical properties such as size, crystallographic structure and uniformity, surface coating, stability, blood circulation time and magnetization determine the efficacy of their tumor accumulation and MPI signal generation. Here, we address these criteria by presenting strategies for the synthesis and surface functionalization of efficient MPI tracers, that can target a typical murine brain cancer model and generate three dimensional images of these tumors with very high signal-to-noise ratios (SNR). Our results showed high contrast agent sensitivities that enabled us to detect 1.1 ng of iron (SNR ∼ 3.9) and enhance the spatial resolution to about 600 µm. The biodistribution of these NPs was also studied using near-infrared fluorescence (NIRF) and single-photon emission computed tomography (SPECT) imaging. NPs were mainly accumulated in the liver and spleen and did not show any renal clearance. This first pre-clinical study of cancer targeted NPs imaged using a tomographic MPI system in an animal model paves the way to explore new nanomedicine strategies for cancer diagnosis and therapy, using clinically safe magnetic iron oxide nanoparticles and MPI.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Glioma/diagnóstico por imagem , Magnetismo , Nanopartículas , Tomografia , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Ratos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual
17.
Nanoscale ; 9(2): 764-773, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27976764

RESUMO

Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.


Assuntos
Barreira Hematoencefálica , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Imagem Multimodal , Astrócitos/citologia , Encéfalo/citologia , Células Cultivadas , Células Endoteliais/citologia , Ouro , Humanos , Magnetismo , Modelos Biológicos
18.
Nano Lett ; 16(6): 3668-74, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27219521

RESUMO

Protease expression is closely linked to malignant phenotypes of different solid tumors; as such, their detection is promising for diagnosis and treatment of cancers, Alzheimer's, and vascular diseases. Here, we describe a new method for detecting proteases by sensitively monitoring the magnetic relaxation of monodisperse iron oxide nanoparticles (IONPs) using magnetic particle spectrometer (MPS). In this assay, tailored peptides functioning as activatable nanosensors link magnetic nanoparticles and possess selective sites that are recognizeable and cleaveable by specific proteases. When these linker peptides, labeled with biotin at N- and C-terminals, are added to the neutravidin functionalized IONPs, nanoparticles aggregate, resulting in well-defined changes in the MPS signal. However, as designed, in the presence of proteases these peptides are cleaved at predetermined sites, redispersing IONPs, and returning the MPS signal(s) close to its preaggregation state. These changes observed in all aspects of the MPS signal (peak intensity, its position as a function of field amplitude, and full width at half-maximum-when combined, these three also eliminate false positives), help to detect specific proteases, relying only on the magnetic relaxation characteristics of the functionalized nanoparticles. We demonstrate the general utility of this assay by detecting one each from the two general classes of proteases: trypsin (digestive serine protease, involved in various cancers, promoting proliferation, invasion, and metastasis) and matrix metalloproteinase (MMP-2, observed through metastasis and tumor angiogenesis). This MPS based protease-assay is rapid, reproducible, and highly sensitive and can form the basis of a feasible, high-throughput method for detection of various other proteases.


Assuntos
Nanopartículas de Magnetita/química , Metaloproteinase 2 da Matriz/análise , Peptídeos/química , Tripsina/análise , Avidina/química , Biotina/química , Linhagem Celular Tumoral , Humanos , Campos Magnéticos , Magnetismo , Tamanho da Partícula , Propriedades de Superfície
19.
Med Phys ; 43(1): 424, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745935

RESUMO

PURPOSE: Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution. METHODS: The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags. RESULTS: The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies. CONCLUSIONS: To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with molecular contrast.


Assuntos
Compostos Férricos/química , Aumento da Imagem/métodos , Imãs , Imagem Molecular/métodos , Nanopartículas , Razão Sinal-Ruído , Algoritmos , Imageamento Tridimensional , Imagem Molecular/instrumentação
20.
Nanoscale ; 7(40): 16890-8, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412614

RESUMO

Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.


Assuntos
Neoplasias Encefálicas , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos , Glioma , Lactoferrina , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Compostos Férricos/química , Compostos Férricos/farmacologia , Glioma/metabolismo , Glioma/patologia , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Lactoferrina/química , Lactoferrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA