Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33268518

RESUMO

Swine influenza A virus (swIAV) infection causes substantial economic loss and disease burden in humans and animals. The 2009 pandemic H1N1 (pH1N1) influenza A virus is now endemic in both populations. In this study, we evaluated the efficacy of different vaccines in reducing nasal shedding in pigs following pH1N1 virus challenge. We also assessed transmission from immunized and challenged pigs to naive, directly in-contact pigs. Pigs were immunized with either adjuvanted, whole inactivated virus (WIV) vaccines or virus-vectored (ChAdOx1 and MVA) vaccines expressing either the homologous or heterologous influenza A virus hemagglutinin (HA) glycoprotein, as well as an influenza virus pseudotype (S-FLU) vaccine expressing heterologous HA. Only two vaccines containing homologous HA, which also induced high hemagglutination inhibitory antibody titers, significantly reduced virus shedding in challenged animals. Nevertheless, virus transmission from challenged to naive, in-contact animals occurred in all groups, although it was delayed in groups of vaccinated animals with reduced virus shedding.IMPORTANCE This study was designed to determine whether vaccination of pigs with conventional WIV or virus-vectored vaccines reduces pH1N1 swine influenza A virus shedding following challenge and can prevent transmission to naive in-contact animals. Even when viral shedding was significantly reduced following challenge, infection was transmissible to susceptible cohoused recipients. This knowledge is important to inform disease surveillance and control strategies and to determine the vaccine coverage required in a population, thereby defining disease moderation or herd protection. WIV or virus-vectored vaccines homologous to the challenge strain significantly reduced virus shedding from directly infected pigs, but vaccination did not completely prevent transmission to cohoused naive pigs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/transmissão , Doenças dos Suínos/transmissão , Eliminação de Partículas Virais , Adjuvantes Imunológicos/administração & dosagem , Animais , Feminino , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Infecções por Orthomyxoviridae/prevenção & controle , Suínos , Doenças dos Suínos/prevenção & controle , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas de Produtos Inativados/administração & dosagem
2.
Data Brief ; 27: 104576, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687431

RESUMO

A swine influenza A pandemic 2009 H1N1 (pH1N1) virus was used in a pig challenge model to investigate the efficacy of whole inactivated vaccines homologous or heterologous to the challenge virus as well as a commercial vaccine. Nasal shedding of viral RNA was monitored daily by real-time, quantitative RT-PCR (RRT-qPCR) as detailed (1). Here we report the statistical modelling of the viral RNA shedding kinetics.

3.
Front Immunol ; 10: 2005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497029

RESUMO

Seasonal influenza viruses cause significant morbidity and mortality in the global population every year. Although seasonal vaccination limits disease, mismatches between the circulating strain and the vaccine strain can severely impair vaccine effectiveness. Because of this, there is an urgent need for a universal vaccine that induces broad protection against drifted seasonal and emerging pandemic influenza viruses. Targeting the conserved stalk region of the influenza virus hemagglutinin (HA), the major glycoprotein on the surface of the virus, results in the production of broadly protective antibody responses. Furthermore, replication deficient viral vectors based on Chimpanzee Adenovirus Oxford 1 (ChAdOx1) and modified vaccinia Ankara (MVA) virus expressing the influenza virus internal antigens, the nucleoprotein (NP) and matrix 1 (M1) protein, can induce strong heterosubtypic influenza virus-specific T cell responses in vaccinated individuals. Here, we combine these two platforms to evaluate the efficacy of a viral vectored vaccination regimen in protecting ferrets from H3N2 influenza virus infection. We observed that viral vectored vaccines expressing both stalk-targeting, chimeric HA constructs, and the NP+M1 fusion protein, in a prime-boost regimen resulted in the production of antibodies toward group 2 HAs, the HA stalk, NP and M1, as well as in induction of influenza virus-specific-IFNγ responses. The immune response induced by this vaccination regime ultimately reduced viral titers in the respiratory tract of influenza virus infected ferrets. Overall, these results improve our understanding of vaccination platforms capable of harnessing both cellular and humoral immunity with the goal of developing a universal influenza virus vaccine.


Assuntos
Antígenos Virais/genética , Hemaglutininas/genética , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/genética , Adenoviridae/genética , Animais , Antígenos Virais/imunologia , Linhagem Celular , Embrião de Galinha , Cães , Furões , Vetores Genéticos , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Insetos , Masculino , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/imunologia , Poxviridae/genética , Proteínas de Ligação a RNA/imunologia , Vacinação , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/imunologia
4.
Vaccine ; 37(37): 5567-5577, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31399277

RESUMO

Seasonal influenza virus infections cause significant morbidity and mortality every year. Annual influenza virus vaccines are effective but only when well matched with circulating strains. Therefore, there is an urgent need for better vaccines that induce broad protection against drifted seasonal and emerging pandemic influenza viruses. One approach to design such vaccines is based on targeting conserved regions of the influenza virus hemagglutinin. Sequential vaccination with chimeric hemagglutinin constructs can refocus antibody responses towards the conserved immunosubdominant stalk domain of the hemagglutinin, rather than the variable immunodominant head. A complementary approach for a universal influenza A virus vaccine is to induce T-cell responses to conserved internal influenza virus antigens. For this purpose, replication deficient recombinant viral vectors based on Chimpanzee Adenovirus Oxford 1 and Modified Vaccinia Ankara virus are used to express the viral nucleoprotein and the matrix protein 1. In this study, we combined these two strategies and evaluated the efficacy of viral vectors expressing both chimeric hemagglutinin and nucleoprotein plus matrix protein 1 in a mouse model against challenge with group 2 influenza viruses including H3N2, H7N9 and H10N8. We found that vectored vaccines expressing both sets of antigens provided enhanced protection against H3N2 virus challenge when compared to vaccination with viral vectors expressing only one set of antigens. Vaccine induced antibody responses against divergent group 2 hemagglutinins, nucleoprotein and matrix protein 1 as well as robust T-cell responses to the nucleoprotein and matrix protein 1 were detected. Of note, it was observed that while antibodies to the H3 stalk were already boosted to high levels after two vaccinations with chimeric hemagglutinins (cHAs), three exposures were required to induce strong reactivity across subtypes. Overall, these results show that a combinations of different universal influenza virus vaccine strategies can induce broad antibody and T-cell responses and can provide increased protection against influenza.


Assuntos
Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas de Ligação a RNA/imunologia , Vacinas de DNA/imunologia , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Imunidade Celular , Camundongos , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas de DNA/genética , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/genética
5.
Vaccine ; 37(17): 2288-2293, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30914224

RESUMO

Swine influenza A virus (SwIV) infection has considerable economic and animal welfare consequences and, because of the zoonotic potential, can also have public health implications. The 2009 pandemic H1N1 'swine-origin' infection is now endemic in both pigs and humans. In Europe, avian-like H1avN1, human-like H1huN2, human-like swine H3N2 and, since 2009, pandemic H1N1 (pH1N1) lineage viruses and reassortants, constitute the dominant subtypes. In this study, we used a swine pH1N1 challenge virus to investigate the efficacy of whole inactivated virus vaccines homologous or heterologous to the challenge virus as well as a commercial vaccine. We found that vaccine-mediated protection was most effective when vaccine antigen and challenge virus were homologous and correlated with the specific production of neutralising antibodies and a cellular response to the challenge virus. We conclude that a conventional whole inactivated SwIV vaccine must be antigenically matched to the challenge strain to be an effective control measure.


Assuntos
Antígenos Virais/imunologia , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Citocinas/metabolismo , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Suínos , Vacinas de Produtos Inativados/imunologia , Eliminação de Partículas Virais
6.
Vet Res ; 47(1): 103, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765064

RESUMO

Influenza virus infection in pigs is a major farming problem, causing considerable economic loss and posing a zoonotic threat. In addition the pig is an excellent model for understanding immunity to influenza viruses as this is a natural host pathogen system. Experimentally, influenza virus is delivered to pigs intra-nasally, by intra-tracheal instillation or by aerosol, but there is little data comparing the outcome of different methods. We evaluated the shedding pattern, cytokine responses in nasal swabs and immune responses following delivery of low or high dose swine influenza pdmH1N1 virus to the respiratory tract of pigs intra-nasally or by aerosol and compared them to those induced in naturally infected contact pigs. Our data shows that natural infection by contact induces remarkably high innate and adaptive immune response, although the animals were exposed to a very low virus dose. In contacts, the kinetics of virus shedding were slow and prolonged and more similar to the low dose directly infected animals. In contrast the cytokine profile in nasal swabs, antibody and cellular immune responses of contacts more closely resemble immune responses in high dose directly inoculated animals. Consideration of these differences is important for studies of disease pathogenesis and assessment of vaccine protective efficacy.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Administração Intranasal , Aerossóis , Animais , Citocinas/metabolismo , Feminino , Citometria de Fluxo/veterinária , Exposição por Inalação , Pulmão/patologia , Cavidade Nasal/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Eliminação de Partículas Virais
7.
J Immunol ; 196(12): 5014-23, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183611

RESUMO

Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Carga Viral , Aerossóis , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade Celular , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/sangue , Influenza Humana/imunologia , Influenza Humana/virologia , Interferon gama/biossíntese , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Nariz/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pandemias/prevenção & controle , Sus scrofa , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
8.
Vet Microbiol ; 163(3-4): 364-7, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23395293

RESUMO

The present work was aimed to investigate the torque teno sus virus 1 and 2 (TTSuV1 and 2) loads of different tissues of pigs affected by porcine circovirus type 2 (PCV2)-systemic disease (PCV2-SD) and healthy age-matched ones. A total of 20 pigs (10 healthy and 10 diagnosed as PCV2-SD) were chosen for the study. From each pig, a total of 7 tissues were analyzed, including lung, kidney, liver, ileum, bone marrow, and mesenteric and mediastinal lymph nodes. TTSuV 1 and 2 were quantified by means of species-specific real time quantitative PCR methods. Both TTSuVs were distributed systemically. Results showed the highest loads for TTSuV2 in tissues from diseased pigs. The highest TTSuV1 DNA load was found in bone marrow, lung, and liver, while it was in bone marrow, mediastinal lymph node and liver for TTSuV2. Bone marrow was the tissue with the highest viral DNA burden for both TTSuV species. Overall, statistically significant differences were observed in viral DNA load, with TTSuV2 showing higher loads than TTSuV1 (p<0.05). Also, tissues from PCVD-SD affected pigs showed higher TTSuV2 loads than tissues of the healthy group (p<0.05). It was concluded that both TTSuVs had a wide tissue distribution all over the body, with differential load comparing diseased versus healthy pigs. It is likely that other tissues not included in this study would also be infected by TTSuVs.


Assuntos
Infecções por Circoviridae/veterinária , Infecções por Vírus de DNA/veterinária , Doenças dos Suínos/virologia , Torque teno virus/fisiologia , Animais , Infecções por Circoviridae/complicações , Infecções por Circoviridae/virologia , Circovirus/fisiologia , Infecções por Vírus de DNA/complicações , Infecções por Vírus de DNA/virologia , DNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Torque teno virus/genética , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA