Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 97(6): e0043723, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37195206

RESUMO

Enveloped viruses undergo a complex multistep process of assembly, maturation, and release into the extracellular space utilizing host secretory machinery. Several studies of the herpesvirus subfamily have shown that secretory vesicles derived from the trans-Golgi network (TGN) or endosomes transport virions into the extracellular space. However, the regulatory mechanism underlying the release of Epstein-Barr virus, a human oncovirus, remains unclear. We demonstrate that disruption of BBLF1, a tegument component, suppressed viral release and resulted in the accumulation of viral particles on the inner side of the vesicular membrane. Organelle separation revealed the accumulation of infectious viruses in fractions containing vesicles derived from the TGN and late endosomes. Deficiency of an acidic amino acid cluster in BBLF1 reduced viral secretion. Moreover, truncational deletion of the C-terminal region of BBLF1 increased infectious virus production. These findings suggest that BBLF1 regulates the viral release pathway and reveal a new aspect of tegument protein function. IMPORTANCE Several viruses have been linked to the development of cancer in humans. Epstein-Barr virus (EBV), the first identified human oncovirus, causes a wide range of cancers. Accumulating literature has demonstrated the role of viral reactivation in tumorigenesis. Elucidating the functions of viral lytic genes induced by reactivation, and the mechanisms of lytic infection, is essential to understanding pathogenesis. Progeny viral particles synthesized during lytic infection are released outside the cell after the assembly, maturation, and release steps, leading to further infection. Through functional analysis using BBLF1-knockout viruses, we demonstrated that BBLF1 promotes viral release. The acidic amino acid cluster in BBLF1 was also important for viral release. Conversely, mutants lacking the C terminus exhibited more efficient virus production, suggesting that BBLF1 is involved in the fine-tuning of progeny release during the EBV life cycle.


Assuntos
Herpesvirus Humano 4 , Vesículas Secretórias , Proteínas Virais , Liberação de Vírus , Replicação Viral , Humanos , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Vesículas Secretórias/metabolismo , Vesículas Secretórias/virologia , Vírion/fisiologia , Replicação Viral/fisiologia , Células HEK293 , Proteínas Virais/metabolismo , Liberação de Vírus/genética
2.
J Virol ; 96(14): e0051822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862711

RESUMO

Protein-protein interactions (PPIs) are crucial for various biological processes. Epstein-Barr virus (EBV) proteins typically form complexes, regulating the replication and persistence of the viral genome in human cells. However, the role of EBV protein complexes under physiological conditions remains unclear. In this study, we performed comprehensive analyses of EBV PPIs in living cells using the NanoBiT system. We identified 195 PPIs, many of which have not previously been reported. Computational analyses of these PPIs revealed that BLRF2, which is only found in gammaherpesviruses, is a central protein in the structural network of EBV tegument proteins. To characterize the role of BLRF2, we generated two BLRF2 knockout EBV clones using CRISPR/Cas9. BLRF2 knockout significantly decreased the production of infectious virus particles, which was partially restored by exogenous BLRF2 expression. In addition, self-association of BLRF2 protein was found, and mutation of the residues crucial for the self-association affected stability of the protein. Our data imply that BLRF2 is a tegument network hub that plays important roles in progeny virion maturation. IMPORTANCE EBV remains a significant public health challenge, causing infectious mononucleosis and several cancer types. Therefore, the better understanding of the molecular mechanisms underlying EBV replication is of high clinical importance. As protein-protein interactions (PPIs) are major regulators of virus-associated pathogenesis, comprehensive analyses of PPIs are essential. Previous studies on PPIs in EBV or other herpesviruses have predominantly employed the yeast two-hybrid (Y2H) system, immunoprecipitation, and pulldown assays. Herein, using a novel luminescence-based method, we identified 195 PPIs, most of which have not previously been reported. Computational and functional analyses using knockout viruses revealed that BLRF2 plays a central role in the EBV life cycle, which makes it a valuable target for drug development.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Mapas de Interação de Proteínas , Proteínas Virais , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Proteínas Virais/genética , Replicação Viral
3.
Cancer Sci ; 112(12): 5088-5099, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609775

RESUMO

Epstein-Barr virus-associated lymphoproliferative disease (EBV-LPD) is frequently fatal. Innate immunity plays a key role in protecting against pathogens and cancers. The stimulator of interferon genes (STING) is regarded as a key adaptor protein allowing DNA sensors recognizing exogenous cytosolic DNA to activate the type I interferon signaling cascade. In terms of EBV tumorigenicity, the role of STING remains elusive. Here we showed that treatment with the STING inhibitor, C-176, suppressed EBV-induced transformation in peripheral blood mononuclear cells. In an EBV-LPD mouse model, C-176 treatment also inhibited tumor formation and prolonged survival. Treatment with B cells alone did not affect EBV transformation, but suppression of EBV-induced transformation was observed in the presence of T cells. Even without direct B cell-T cell contact in a transwell system, the inhibitor reduced the transformation activity, indicating that intercellular communication by humoral factors was critical to prevent EBV-induced transformation. These findings suggest that inhibition of STING signaling pathway with C-176 could be a new therapeutic target of EBV-LPD.


Assuntos
Antineoplásicos/administração & dosagem , Transformação Celular Viral/efeitos dos fármacos , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Linfoma de Células B/prevenção & controle , Proteínas de Membrana/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Infecções por Vírus Epstein-Barr/imunologia , Células HEK293 , Herpesvirus Humano 4 , Humanos , Células Jurkat , Linfoma de Células B/imunologia , Linfoma de Células B/virologia , Camundongos , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Proc Natl Acad Sci U S A ; 113(52): 15042-15047, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956627

RESUMO

Nutritional conditions during early development influence the plastic expression of adult phenotypes. Among several body modules of animals, the development of sexually selected exaggerated traits exhibits striking nutrition sensitivity, resulting in positive allometry and hypervariability distinct from other traits. Using de novo RNA sequencing and comprehensive RNA interference (RNAi) for epigenetic modifying factors, we found that histone deacetylases (HDACs) and polycomb group (PcG) proteins preferentially influence the size of mandibles (exaggerated male weapon) and demonstrate nutrition-dependent hypervariability in the broad-horned flour beetle, Gnatocerus cornutus RNAi-mediated HDAC1 knockdown (KD) in G. cornutus larvae caused specific curtailment of mandibles in adults, whereas HDAC3 KD led to hypertrophy. Notably, these KDs conferred opposite effects on wing size, but little effect on the size of the core body and genital modules. PcG RNAi also reduced adult mandible size. These results suggest that the plastic development of exaggerated traits is controlled in a module-specific manner by HDACs.


Assuntos
Besouros/anatomia & histologia , Besouros/enzimologia , Histona Desacetilases/metabolismo , Proteínas de Insetos/metabolismo , Mandíbula/anatomia & histologia , Animais , Besouros/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Histona Desacetilases/genética , Proteínas de Insetos/genética , Larva , Masculino , Fenótipo , Complexo Repressor Polycomb 1/metabolismo , RNA/análise , Interferência de RNA , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA