Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194900, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36410688

RESUMO

Hypoxic response to low oxygen levels is characteristic of most solid cancers. Hypoxia-inducible factors (HIFs) regulate cellular metabolism, survival, proliferation, and cancer stem cell growth during hypoxia. The genome-wide analysis identified HAT1, a type B histone acetyltransferase, as an upregulated and essential gene in glioblastoma (GBM). GSEA analysis of differentially regulated genes in HAT1 silenced cells identified significant depletion of "hypoxia" gene sets. Hypoxia conditions induced HIF2A, not HIF1A protein levels in glioma cells in a HAT1-dependent manner. HAT1 and HIF2A interacted with each other and occupied the promoter of VEGFA, a bonafide HIF1A/HIF2A target. Acetylation of K512 and K596 residues by HAT1 is essential for HIF2A stabilization under normoxia and hypoxia as HIF2A carrying acetylation mimic mutations at either of these residues (H512Q or K596Q) showed stable expression in HAT1 silenced cells under normoxia and hypoxia conditions. Finally, we demonstrate that the HAT1-HIF2A axis is essential for hypoxia-promoted cancer stem cell maintenance and reprogramming. Thus, our study identifies that the HAT1-dependent acetylation of HIF2A is vital to executing the hypoxia-induced cell survival and cancer stem cell growth, therefore proposing the HAT1-HIF2A axis as a potential therapeutic target.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Glioblastoma , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Hipóxia
2.
J Agric Food Chem ; 70(49): 15474-15486, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36456189

RESUMO

This study evaluated the potency of zein-alginate-phosphatidylcholine nanoparticles (NPs) on bioaccessibility/intestinal uptake of encapsulated lycopene (LY) and lutein (LT) versus dietary absorption using simulated digestion and human intestinal Caco-2 cells. LY-zein-alginate-PC (LYZAP) and LT-zein-alginate-PC (LTZAP) NPs yield desired properties, which exhibit sustained release and are suitable for oral administration. Interestingly, co-treatment of LYZAP + LTZAP showed better release of carotenoids instead of individual treatment at intestinal pH. Bioaccessibility, cellular uptake, and basolateral secretion of LY and LT from NPs were significantly enhanced than micellar carotenoids (dietary mode of absorption). The increased absorption of carotenoids from NPs correlated with triglyceride levels. The intestinal cell uptake of carotenoids by nanoencapsulation may be due to endocytosis, paracellular, and SRB-1 protein-mediated transport. Overall, LYZAP and LTZAP NPs possess superior properties to control the release and cellular uptake of unique or distinct carotenoids. The inclusion of alginate and phosphatidylcholine in zein-based nanoencapsulation could be a promising strategy to improve carotenoid bioavailability.


Assuntos
Luteína , Zeína , Humanos , Células CACO-2 , Luteína/metabolismo , Licopeno , Micelas , Alginatos , Carotenoides/metabolismo , Disponibilidade Biológica , Lecitinas
3.
Nat Commun ; 13(1): 5415, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109503

RESUMO

Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sirtuínas , Animais , Cromatina , Glucocorticoides/farmacologia , Mamíferos/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Somatomedinas/metabolismo , Fatores de Transcrição
4.
Andrologia ; 54(8): e14451, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35484731

RESUMO

The aim of the present study was to identify fertility associated sperm membrane proteins in crossbred bulls. Sperm membrane proteins from high- and low-fertile Holstein Friesian crossbred bulls (n = 3 each) were subjected to high-throughput liquid chromatography-mass spectrometry (LC-MS/MS) for comparative proteomic analysis. Proteomic profiling identified a total of 456 proteins in crossbred bull spermatozoa; it was found that 108 proteins were up regulated while 26 proteins were down regulated (>1.5-folds) in spermatozoa from low- compared to high-fertile bulls. Gene ontology classification revealed that upregulated proteins in low-fertile bulls were involved in biological process such as oxidation-reduction process (p = 3.14E-06), fusion of sperm to egg plasma membrane (p = 7.51E-04), sperm motility (p = 0.03), and capacitation (p = 0.09), while down regulated proteins were associated with transport (p = 6.94E-04), superoxide metabolic process (p = 0.02), and tricarboxylic acid cycle (p = 0.04). KEGG pathway analysis revealed that oxidative phosphorylation and tricarboxylic acid cycle pathways are the most significantly affected pathway in low-fertile bulls. It was concluded that expression of proteins associated with oxidative phosphorylation and tricarboxylic acid cycle pathways were altered in low-fertile crossbred bulls, and expression levels of SPATA19, ELSPBP1, ACRBP, CLU, SUCLA2, and SPATC1 could aid in assessing potential fertility of crossbred bulls.


Assuntos
Proteômica , Motilidade dos Espermatozoides , Animais , Bovinos , Cromatografia Líquida , Fertilidade , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Espectrometria de Massas em Tandem
5.
J Biol Chem ; 295(2): 415-434, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31744885

RESUMO

Caloric restriction has been associated with increased life span and reduced aging-related disorders and reduces fibrosis in several diseases. Fibrosis is characterized by deposition of excess fibrous material in tissues and organs and is caused by aging, chronic stress, injury, or disease. Myofibroblasts are fibroblast-like cells that secrete high levels of extracellular matrix proteins, resulting in fibrosis. Histological studies have identified many-fold increases of myofibroblasts in aged organs where myofibroblasts are constantly generated from resident tissue fibroblasts and other cell types. However, it remains unclear how aging increases the generation of myofibroblasts. Here, using mouse models and biochemical assays, we show that sirtuin 6 (SIRT6) deficiency plays a major role in aging-associated transformation of fibroblasts to myofibroblasts, resulting in tissue fibrosis. Our findings suggest that SIRT6-deficient fibroblasts transform spontaneously to myofibroblasts through hyperactivation of transforming growth factor ß (TGF-ß) signaling in a cell-autonomous manner. Importantly, we noted that SIRT6 haploinsufficiency is sufficient for enhancing myofibroblast generation, leading to multiorgan fibrosis and cardiac dysfunction in mice during aging. Mechanistically, SIRT6 bound to and repressed the expression of key TGF-ß signaling genes by deacetylating SMAD family member 3 (SMAD3) and Lys-9 and Lys-56 in histone 3. SIRT6 binding to the promoters of genes in the TGF-ß signaling pathway decreased significantly with age and was accompanied by increased binding of SMAD3 to these promoters. Our findings reveal that SIRT6 may be a potential candidate for modulating TGF-ß signaling to reduce multiorgan fibrosis during aging and fibrosis-associated diseases.


Assuntos
Fibroblastos/patologia , Miocárdio/patologia , Sirtuínas/genética , Fator de Crescimento Transformador beta/genética , Envelhecimento , Animais , Fibroblastos/metabolismo , Fibrose , Deleção de Genes , Masculino , Camundongos , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais , Proteína Smad3/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
6.
J Agric Food Chem ; 66(43): 11362-11371, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30259736

RESUMO

Lycopene (LYC) has been correlated with the reduction of certain cancers and chronic diseases. However, the existence and biofunctionality of degraded, oxidized, and biotransformed LYC products in vivo have not been revealed. Therefore, this study aimed to screen and elucidate the potential bioactive lycopene-derived products in breast-cancer and non-cancerous cells. LYC-oxidation or -cleavage products were generated using KMnO4. These oxidation products were separated as fractions I-III by silica column chromatography using gradient solvent systems. Further, LC-MS/MS (ESI)+ was used to elucidate their possible fragmentation patterns and structures. Fraction II showed higher cytotoxicity (IC50 value of 64.5 µM), cellular uptake, and apoptosis-inducing activity in MCF-7 cells. This fraction consists of major peak m/ z 323, identified as apo-8,6'-carotendial. The cytotoxicity-inducing activity may be due to partial ROS generation with mitochondrial dysfunction. Further, the role of apo-8,6'-carotendial in the induction of apoptosis is demonstrated for the first time. These results illustrated that LYC-oxidation derivatives or metabolites are involved in growth inhibition of cancer cells. Exploration of specific oxidized-carotenoid products will give further insight into the field of nutritional biochemistry.


Assuntos
Antineoplásicos Fitogênicos/química , Carotenoides/química , Apoptose , Cromatografia Líquida de Alta Pressão , Humanos , Licopeno , Solanum lycopersicum/química , Células MCF-7 , Potencial da Membrana Mitocondrial , Estrutura Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
7.
Food Chem Toxicol ; 118: 675-690, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29920287

RESUMO

The combination of carotenoids and doxorubicin (DOX) selectively alters oxidative stress-mediated apoptosis in breast cancer cells. Primarily, cytotoxic efficiency of carotenoids (ß-carotene, BC; lutein, LUT; astaxanthin, AST; or fucoxanthin, FUCO) either with or without a minimal cytotoxic dose of DOX was evaluated in MCF-7 (0.12 µM) and MDA-MB-231 cells (0.28 µM). The higher cell growth inhibition of BC and/or LUT with DOX was selected for testing in further cell-based assays. Low-dose DOX significantly enhanced cytotoxicity in carotenoid (<5 µM)-treated cells compared to high-dose DOX (>1 µM) or carotenoid (20 µM) treatment alone. Depleted glutathione, increased lipid peroxides and increased ROS levels in cells confirmed the cytotoxic effect. Furthermore, mitochondrial dysfunction, cell growth arrest at G0/G1 phase and caspase cascades as well as up- and down-regulated expression levels of related proteins (p21, p27, Bax, p53, Bcl-2, and cyclin D1) revealed the synergistic effect of carotenoid and DOX treatment on ROS-mediated apoptosis. These observations demonstrated increased apoptosis in BC + DOX/LUT + DOX-treated cells due to the pronounced pro-oxidant action. Interestingly, normal breast epithelial cells (MCF 10A) exposed to similar treatments resulted in non-significant cytotoxicity. These newly observed mechanistic differences of anticancer drugs on the mitigation of toxicity with carotenoids may provide insight into the targeting of cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carotenoides/farmacologia , Doxorrubicina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/metabolismo , Carotenoides/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
8.
Food Chem Toxicol ; 106(Pt A): 58-69, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28511808

RESUMO

This study investigated the synergistic efficacy of keto-carotenoid astaxanthin (AST, from shrimp) plus hydrocarbon (ß-carotene, BC) and hydroxyl (lutein, L) carotenoids (from greens) on molecular events in MCF-7 cells. MCF-7 cells were treated with either of carotenoid (20 µM, AST or BC or L) separately or the mixture of them (an equimolar concentration of carotenoids mixture, CM) or saponified carotenoid extract from shrimp (SSCE) for 48 h and analyzed cellular uptake, cytotoxicity, and apoptosis. The IC50 and combination-index values of AST co-treatment with a lower concentration of BC and L (5 µM) exhibited enhanced cytotoxicity and oxidative stress as compared with individual carotenoids or SSCE. Further, higher cellular uptake/accumulation of AST along with BC and L found to synergistically induce apoptosis through modulation of cyclin D1, p53, Bax and Bcl-2 expressions by arresting cell cycle at G0/G1 phase. Further, CM or SSCE treatments are unlikely to affect proliferation of normal breast epithelial cells (MCF-10A). The results of selective killing of MCF-7 cells demonstrated a greater insight on the synergistic effect of shrimp AST plus BC and L. It is concluded that consumption of shrimp along with green leafy vegetables helps in combating cancer chemoprevention.


Assuntos
Neoplasias da Mama/fisiopatologia , Luteína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Penaeidae/química , Extratos Vegetais/farmacologia , Spinacia oleracea/química , beta Caroteno/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Sinergismo Farmacológico , Feminino , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Food Chem Toxicol ; 97: 265-276, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27637924

RESUMO

Currently, upon understanding the metabolomics of carotenoids, it is important to address the key role of carotenoid derived products. In this regard, aim of the study was to elucidate and explore the role of lycopene (LYC) oxidative products generated through autoxidation (AOL) or chemical (KMnO4) oxidation (COL) against proliferation of selected cancer cells. Preliminary, we investigated the effect of LYC on cell viability of various cancer cell lines (PC-3, MCF-7, A431, HepG2, HeLa and A549). Based on the results of LYC treatment on cell cytotoxicity levels, MCF-7, PC-3 and HeLa cell lines were further tested with AOL and COL products. The decreased cell viability with depleted GSH and increased MDA levels were observed when treated with COL products than control, LYC and AOL. In addition, COL products increased ROS levels and percent apoptosis. The typical morphological changes and nuclear condensations showed that COL products have anti-proliferation and apoptosis inducing activity. Based on results, we hypothesized that ROS generation by LYC oxidation products may be one of intermediate step involved in apoptosis. The redox status and therapeutic approach of COL products in modulating ROS and induction of apoptosis in cancer cells were reported for the first time, to our knowledge. To conclude, COL products involves in cancer growth inhibition efficiently than intact LYC and AOL. Hence, there is a great potential for synthesizing or producing such carotenoid oxidation products to augment cancer complication.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carotenoides/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Citometria de Fluxo , Humanos , Licopeno , Neoplasias/tratamento farmacológico , Oxirredução , Células Tumorais Cultivadas
10.
Mol Cell Biochem ; 406(1-2): 245-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998494

RESUMO

The objective of the present study was to determine the role of different vehicles in carotenoids delivery and their influence on cell viability, cell cycle progression and induction of apoptosis in HeLa cells. Cells (5 × 10(3)) were treated with different concentrations (25-100 µM) of ß-carotene (BC) or lutein (L) or astaxanthin (AST) dissolved in 0.5% of tetrahydrofuran (THF), dimethylsulfoxide (DMSO), and fetal bovine serum (FBS), respectively. The effect of delivery vehicle on carotenoids uptake, cytotoxicity, oxidative status, cell cycle distribution, and apoptosis was examined after 48 h of incubation. The results shown that, cell viability reduced significantly in a dose- and time-dependent manner irrespective of carotenoid delivered in vehicles. Cellular uptake of BC delivered in THF was higher by 49.1, 29.7% and L delivered through THF was higher by 41.7 and 37.5% than DMSO and FBS, respectively. While, AST delivered through DMSO was higher by 36.1 and 43.7% than the THF and FBS, respectively. In case of cells treated either with BC or L delivered through THF and AST in DMSO decreased the glutathione and increased the malondialdehyde levels. The net increase in the G 2/M phase percentage of cell cycle progression was observed in carotenoid-treated cells. The % induction of apoptosis by BC or L delivered with THF and AST in DMSO was higher than other treated groups. In conclusion, choice of suitable vehicle for specific carotenoids delivery is essential that in turn may influence on cell proliferation and cell-based assays.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Carotenoides/farmacologia , Ciclo Celular/efeitos dos fármacos , Portadores de Fármacos/farmacologia , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/metabolismo , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA